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Abstract

We propose a model of optimal decision making subject to a memory constraint. The
constraint is a limit on the complexity of memory measured using Shannon’s mutual
information, as in models of rational inattention; but our theory differs from that of
Sims (2003) in not assuming costless memory of past cognitive states. We show that
the model implies that both forecasts and actions will exhibit idiosyncratic random
variation; that average beliefs will also differ from rational-expectations beliefs, with a
bias that fluctuates forever with a variance that does not fall to zero even in the long
run; and that more recent news will be given disproportionate weight in forecasts. We
solve the model under a variety of assumptions about the degree of persistence of the
variable to be forecasted and the horizon over which it must be forecasted, and examine
how the nature of forecast biases depends on these parameters. The model provides a
simple explanation for a number of features of reported expectations in laboratory and
field settings, notably the evidence of over-reaction in elicited forecasts documented by
Landier, Ma and Thesmar (2020) and Bordalo et al. (2020).

∗We thank Ben Hébert, David Laibson, and Andrei Shleifer for helpful discussions, and the Alfred P.
Sloan Foundation, the CNRS through UMR 8023, and the IOB for research support.



The hypothesis of rational expectations (RE) proposes that decisions are based on ex-
pectations that make use of all available information in an optimal way: that is, those that
would be derived by correct Bayesian inference from an objectively correct prior and the data
that has been observed to that date. Yet both in surveys of individual forecasts of macroe-
conomic and financial variables and in forecasts elicited in experimental settings, beliefs are
more heterogeneous than this hypothesis should allow, and forecast errors are predictable on
the basis of variables observable by the forecasters, contrary to this hypothesis. In particu-
lar, a number of studies have argued that forecasts typically over-react to new realizations of
the variable being forecasted. (See Bordalo et al., 2020, and Landier et al., 2020, for recent
examples with extensive references to prior literature.)

A variety of models of expectation formation have been proposed that allow for such
over-reaction. The simplest type of model simply posits that the forecasted future value of
a variable is a particular linear function of the last few observations of the variable; with an
appropriate choice of the coefficients (such as those proposed by Metzler, 1941), a forecasting
heuristic of this kind may imply that a recent increase in the variable will be extrapolated
into the future, so that further increases are anticipated, regardless of whether the degree of
serial correlation of changes in the variable make this an optimal forecast. A classic critique
of such proposals, however, is that of Muth (1961): why should decision makers continue
to forecast in this way, if their forecasts are systematically biased, as repeated observations
should eventually make clear? Moreover, a mechanical heuristic with fixed coefficients is
unable to explain how the biases in observed forecasts change depending on the persistence
of the process that is forecasted (Landier et al., 2020).

Fuster et al. (2010, 2011) propose a more sophisticated model, in which decision makers
are assumed to forecast a time series by modeling it as a low-order autoregressive process;
the coefficients of their forecasting rule are those implied by the AR(k) model that best fits
the autocorrelation function of the actual series, for some fixed bound on k. The authors
argue that actual time series often involve long-horizon dependencies, and show that in this
case (say, an AR(40) process forecasted by people who consider models with no more than 10
lags), long-horizon forecasts using the best-fitting AR(k) model can significantly over-react
to recent trends in the data.

This proposal, however, remains subject to several objections. Why should the restriction
to models of the data with a fixed upper bound on k be maintained, even when the available
sequence of observations with which to estimate the model becomes unboundedly long?
Moreover, even if one grants that a constraint on model complexity requires that no more
than some finite number of explanatory variables be stored and used as a basis for forecasts,
why must the explanatory variables correspond to the last k observations of the series? In the
kind of example in which Fuster et al. argue that their proposal predicts over-reaction, more
accurate long-horizon forecasts would be possible if the forecast were conditioned on a long
moving average of observations, rather than only recent observations; yet tracking a small
number of moving averages would seem no more complex than always having access to the
last k observations. And above all, the Fuster et al. explanation implies that over-reaction
should only be observed in the case of variables that are not well-described by an AR(k)
process of low enough order. Yet Landier et al. (2020) find significant over-reaction in an
experiment in which the true data-generating process is an AR(1) process; and in fact, they
find the most severe degree of over-reaction (as discussed further below) when the process
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to be forecasted is white noise.
Here we offer a different explanation for the pervasiveness of over-reaction. We consider

a model in which a decision maker’s forecasts (or more generally, actions with consequences
that depend on the future realization of some variable) can be based both on currently
observable information and an imperfect memory of past observations. Subject to this con-
straint on the information that the decision rule can use, we assume that the rule is optimal.
Moreover, rather than making an arbitrary assumption about the kind of statistics about
past experience that can be recalled with greater or lesser precision, we allow the memory
structure to be specified in a very flexible way, and assume that it is optimized for the
particular decision problem, subject only to a constraint on the overall complexity of the
information that can be stored in (and retrieved from) memory — or more generally, subject
to a cost of using a more complex memory structure.

In the limiting case in which the cost of memory complexity is assumed to be negligible,
the predictions of our model coincide with those of the rational expectations hypothesis.
But when the cost is larger (or the constraint on memory complexity is tighter), our model
predicts that forecasts should be both heterogeneous (even in the case of forecasters who
observe identical data) and systematically biased. Moreover, the predicted biases include
the type of over-reaction to news documented in surveys of forecasts of macroeconomic and
financial time series by Bordalo et al. (2020) and in laboratory forecasting experiments by
Landier et al. (2020). And unlike the model of Fuster et al. (2010, 2011), our model predicts
that over-reaction to news will be most severe in the case of time series exhibiting little serial
correlation.

In seeking to endogenize the information content of the noisy cognitive state on the basis
of which people must act, our theory is in the spirit of Sims’s (2003) theory of “rational
inattention”; and indeed, we follow Sims in modeling the complexity constraint using infor-
mation theory. There is nonetheless an important difference between our theory and that of
Sims (2003). Sims assumes a constraint on the precision with which new observations of the
world can reflect any current or past conditions outside the head of the decision maker, but
assumes perfectly precise memory of all of the decision maker’s own past cognitive states, and
also assumes that past external states can be observed at any time with the same precision as
current conditions. We instead assume (for the sake of simplicity) that the current external
state can be observed with perfect precision, but that memory of past cognitive states is
subject to an information constraint; and we further assume that the decision maker has no
access to external states that occurred in the past, except through (information-constrained)
access to her own memory of those past states. These differences are crucial for the ability
of our model to explain over-reaction to news.

Other recent papers that explore the consequences of assuming that memory provides
only a noisy record of past observations include Neligh (2019) and Afrouzi et al. (2020).
While these authors also assume that some aspects of memory structure are optimized for a
particular decision problem, the classes of memory structures that they consider are different
(and less flexible) than the one that we analyze here.

Both of these papers assume that successive observations of the external state are indi-
vidually encoded (possibly with variable precision) and stored in memory at the time of the
observation; the precision of the record of each observation then evolves over time in a way
that is exogenously specified, rather than optimized; and finally, when memory is accessed

2



later to make a decision, the nature of the signal about the contents of memory may also
be endogenized. (Neligh focuses on endogenizing the precision of the initial encoding of
individual observations; Afrouzi et al. instead focus on endogenizing the precision of what
is retrieved from memory.) Both papers take it as given that memory is a vector of sepa-
rately encoded values of individual observations, and allow no re-encoding of the contents
of memory between the time of an initial observation and its retrieval for use in a decision.
Our concern is instead with the way in which it is optimal for memory to be constantly
re-encoded as time passes, in order to make the most efficient use of a finite limit on the
complexity of the stored representations. We comment further on the differences between
our framework and those of these other papers below.1

We present the assumptions of our model and state the optimization problem that we
consider in section 1. Section 2 offers a general characterization of the optimal memory
structure in our model, showing in particular that it is optimal under our assumptions
for the memory state at each point in time to be represented by a single real number, a
random variable the mean of which depends on the entire sequence of previous observations.
Section 3 illustrates the model’s implications, discussing quantitative aspects of numerical
solutions of the model for particular parameter values. We emphasize the failure of beliefs
ever to converge to those associated with a rational expectations equilibrium, and show that
instead, there are perpetual stationary fluctuations in subjective beliefs similar (though not
identical) to those predicted by models of “constant-gain learning” (Evans and Honkapohja,
2001). Finally, section 4 presents the quantitative predictions of the model for statistics of
the kind reported by Landier et al. (2020) and Bordalo et al. (2020), showing not only
that the model can produce over-reaction to news, but that it can be parameterized so as to
predict roughly the degree of over-reaction measured by these authors. Section 5 [yet to be
written] concludes.

1 A Flexible Model of Imprecise Memory

Here we introduce the class of linear-quadratic-Gaussian decision problems that we study,
and specify the nature of a general constraint on the precision of memory. This gives rise to
a dynamic optimization problem, the solution to which we study below.

1.1 The forecasting problem

In the kind of decision problem which we consider, a decision maker [DM] observes the
successive realizations of a univariate stochastic process yt (“the external state”), which we
assume to be a stationary AR(1) process. We write the law of motion of this process in the
form

yt = µ + ρ(yt−1 − µ) + εyt, (1.1)

where µ is the mean value of the external state, ρ is the coefficient of serial correlation (with
|ρ| < 1), and {εyt} is an i.i.d. sequence, drawn each period from a Gaussian distribution

1See section 1.2. In addition to considering a different class of possible memory structures, Neligh (2019)
addresses largely distinct questions from those analyzed here. Afrouzi et al. (2020) instead address many of
the same phenomena as we do, but under different theoretical assumptions.
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N(0, σ2
ε ). The variance of the external state (conditional on the value of µ and the other

parameters) will therefore equal σ2
y ≡ σ2

ε/(1− ρ2).
The DM’s problem is to produce each period a vector of forecasts zt, so as to minimize

the expected value of a discounted quadratic loss function

E
∞∑
t=0

βt(zt − z̃t)′W (zt − z̃t), (1.2)

where 0 < β < 1, W is a positive definite matrix specifying the relative importance of
accuracy of the different dimensions of the vector of forecasts, and the eventual outcomes
that the DM seeks to forecast are functions of the future evolution of the external state,2

z̃t ≡
∞∑
j=0

Ajyt+j,

where the coefficients {Aj} satisfy
∑

j |Aj| < ∞. This formalism allows us to assume that
the DM may produce forecasts about the future state at multiple horizons (as is typically
true in surveys of forecasters, and also in the experiment of Landier, Ma, and Thesmar,
2020). It also allows us to treat cases in which the DM may choose a vector of actions, the
rewards from which are a quadratic function of the action vector and the external state in
various periods; the problem of action choice to maximize expected reward in such a case is
equivalent to a problem of minimizing a quadratic function of the DM’s error in forecasting
certain linear combinations of the value of the external state at various horizons.3

To simplify our discussion, we assume that the second moments of the stochastic process
for the external state are known (more precisely, that the DM’s decision rule can be optimized
for particular values of these parameters, that are assumed to be the correct ones), while the
first moment is not, so that the DM’s decision rule must respond adaptively to evidence about
the unknown mean value provided by the DM’s observations of the state. Thus the values of
the parameters ρ and σ2

ε are assumed to be known, while µ is not; the parameter µ is assumed
to be drawn from a non-degenerate prior distribution, µ ∼ N(0, Ω). Conditional on the
value of µ, the initial lagged state y−1 is assumed to be drawn from the prior distribution
N(µ, σ2

y), the ergodic distribution for the external state given a value for µ. When we
consider the optimality of a possible decision rule for the DM, we integrate over this prior
distribution of possible values for µ and y−1, assuming that the decision rule must operate
in the same way regardless of which values happen to be true in a given environment.

Note that in the absence of any memory limitation — and given the assumption (main-
tained in this paper) of perfect observability of the realizations of yt — it should be possible
eventually for the DM to learn the value of µ to arbitrary precision, so that despite our

2Note that the variables denoted z̃t are not quantities the value of which is determined at time t; the
subscript t is used to identify the time at which the DM must produce a forecast of the quantity, not the
time at which the outcome will be realized. Thus the best possible forecast of z̃t at time t, even with full
information, would be given by Etz̃t, which will generally not be the same as the realized value z̃t.

3For example, in a standard consumption-smoothing problem with quadratic consumption utility, the
DM’s level of expected utility depends on the accuracy with which “permanent income” is estimated at
each point in time. This requires the DM to forecast a single variable z̃t, for which the coefficient Aj is
proportional to βj for all j ≥ 0.
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assumption that the value of µ must be learned, the optimal decision rule should coincide
asymptotically with the full-information rational-expectations prediction. We show, how-
ever, that this is not true when the precision of memory is bounded.

In any problem of this form (regardless of the assumed memory limitations, which have
yet to be specified), the DM’s problem can equivalently be formulated as one of simply
choosing an estimate µ̂t of the unknown mean µ at each date t, based on the information
available at the time that zt must be chosen. It follows from the law of motion (1.1) that

Etz̃t =
∞∑
j=0

Aj[µ+ ρj(yt − µ)]

Conditioning instead on the coarser information set that represents the DM’s cognitive state
at time t (and noting that this includes precise awareness of the value of yt), we similarly
find that the optimal estimate of z̃t will be given by

zt =
∞∑
j=0

Aj[µ̂t + ρj(yt − µ)], (1.3)

where µ̂t is the expectation of µ conditional on the DM’s information set at time t.
We show in the appendix that the DM’s expected loss cannot be reduced by restricting

attention to a class of decision rules of the form (1.3), under different possible assumptions
about how the estimate µ̂t is formed.4 In the case of any forecasting rule of that kind, the
loss function (1.2) is equal to

α ·
∞∑
t=0

βtMSEt (1.4)

plus a term that is independent of the DM’s forecasts, where

MSEt ≡ E[(µ̂t − µ)2]

is the mean squared error in estimating µ, and α > 0 is a constant that depends on the
coefficients {Aj} and W . Thus one can equivalently formulate the DM’s problem as one of
optimal choice of an estimate µ̂t each period, so as to minimize MSEt.

1.2 Memory structures and their cost

We assume that the memory carried into each period t ≥ 0 can be summarized by a vector
mt of dimension dt; the action chosen in period t (i.e., the choice of µ̂t) must be a function of
the cognitive state specified by st = (mt, yt). The dimension of the memory state is assumed
only to be finite, and is not required to be the same for all t. (The case of perfect memory
can be accommodated by our notation, by assuming that dt = t, and that the elements of
the vector mt correspond to the values (y0, y1, . . . , yt−1).) We assume that current external

4See Appendix A for details of the argument.
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state yt is perfectly observable,5 but that behavior can depend on past states only to the
extent that memory provides information about them.

We further suppose that the memory state evolves according to a linear law of motion of
the form

mt+1 = Λtst + ωt+1, ωt+1 ∼ N(0, Σω,t+1) (1.5)

starting from an initial condition of dimension d0 = 0 (that is, s0 consists only of y0).
However, the dimension dt+1 of the memory that is stored, and the elements of the matrices
Λt,Σω,t+1 are allowed to be arbitrary; we require only that Σω,t+1 must be positive semi-
definite (though it need not be of full rank).

For example, one type of memory structure that this formalism allows us to consider is
an “episodic” memory of the kind assumed by Neligh (2019).6 In this case, dt = t, and there
is an element of mt corresponding to each of the past observations yτ for 0 ≤ τ ≤ t − 1
(generalizing the case of perfect memory just discussed). The memory of yτ at some later
time t is given by mτ+1,t = yτ + uτ+1,t, where uτ+1,t is a Gaussian noise term, independent
of the value of yτ , and with a variance that is necessarily non-decreasing in t. This can be
represented by letting dt = t, Λt be the identity matrix of dimension t + 1, and Σω,t+1 a
diagonal matrix of dimension n + 1 (with non-negative elements, but not necessarily of full
rank).

Another type of memory that we can consider is one in which only the n most recent
past observations of the external state can be recalled, though these are recalled with perfect
precision. The requirement that forecasts be functions of the cognitive state would then
require them to be functions of (yt, yt−1, . . . , yt−n) for some finite n, as under the hypothesis
of “natural expectations” proposed by Fuster, Hébert, and Laibson (2011). This case would
correspond to a specification in which dt = n for all t; Λt is an n× (n+ 1) matrix, the right
n × n block of which is an identity matrix, and the first column of which consists entirely
of zeroes; and Σω,t+1 = 0. Our formalism is much more flexible than either of these cases,
however, and neither of those specifications turns out to be optimal.

We limit the precision of memory by further assuming that there is a cost of storing
and/or accessing the memory state mt+1, that is an increasing function of the Shannon
mutual information between the memory state mt+1 and the cognitive state st about which
it provides information.7 If It is the mutual information between these two random variables,
we assume a memory cost in period t of c(It), where c(I) is an increasing, convex function.
Two extreme possibilities, both of which we consider further below, are the one in which
c(I) is a linear function, c(I) = θ · I for some θ > 0; and the opposite limiting case in which

5We might also assume that the current state is observable only imprecisely, as in the model of Sims
(2003); but in the present treatment, we simplify the analysis, and highlight the consequences of imperfect
memory, by considering the limiting case in which there is no cost of precise observation of the current
external state.

6Note however that Neligh’s model is not a special case of ours, because in addition to restricting attention
to a more special class of memory structures, he assumes a different cost function for precision than the one
we propose below.

7Mutual information is a non-negative scalar quantity that can be defined for any joint distribution
for (st,mt+1), that measures the degree to which the realized value of either random variable provides
information about the value of the other (Cover and Thomas, 2006). This measure is used to determine the
relative cost of different information structures in the rational inattention theory of Sims (2003); properties
of this measure as an information cost function are discussed in Caplin, Dean and Leahy (2019).
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there is a finite upper bound Ī on feasible information transmission, with zero cost for any
I < Ī. Either of these cases allows us to consider a one-parameter family of possible cost
functions, ranging from an arbitrarily loose information constraint (θ near zero, Ī very large)
to a prohibitively tight one (θ extremely high, Ī near zero).

The cost c(It) can equivalently be viewed as either a cost of storing a memory record
with information content It (that is then available with perfect precision in period t + 1),
or a cost of retrieving a signal from memory with information content It in period t + 1
(while the memory stored in period t is taken to have been a perfect record of the period t
cognitive state). These two formulations are identical, given that we assume that only the
signal mt+1 that is retrieved in period t+1 can be stored for future use; thus only the fidelity
with which the retrieved memory mt+1 reproduces the cognitive state st matters. Under the
retrieval-cost interpretation, however, our model remains importantly different from the one
proposed by Afrouzi et al. (2020), in which memory contains a perfect record of all past
observations, but there is a cost of retrieving a precise signal about the contents of memory
for use in a decision. That model assumes that past observations can be stored indefinitely
with perfect precision, with a limit on the precision of recall becoming relevant only when
memory must be consulted; this means that it does not predict “recency bias” as ours does.8

The memory structure each period, together with the rule for choosing an estimate µ̂t as
a function of each period’s cognitive state, are then assumed to be chosen so as to minimize
total discounted costs

∞∑
t=0

βt [α ·MSEt + c(It), ] (1.6)

taking into account both the cost of less accurate forecasts (1.4) and the cost of greater
memory precision. Note that no expectation is needed in this objective, since bothMSEt and
It are functions of the entire joint probability distribution of possible values for µ,mt, yt, µ̂t
and mt+1.

2 The Optimal Memory Structure

We turn now to a general characterization of the solution to the dynamic optimization
problem just posed.

2.1 Implications of linear-Gaussian dynamics

For any memory structure in the class specified in the previous section, the posterior dis-
tribution over possible values of (µ, y−1, y0, . . . , yt−1) implied by memory state mt will be a
multivariate Gaussian distribution. It is thus fully characterized by specifying a finite set of
first and second moments of the posterior associated with the memory state. Moreover, the
particular memory state mt at a given date t can be identified by the associated vector of
first moments. For the second moments of the posterior are the same for all possible memory
states at any time t: they depend on the matrices {Λτ ,Σω,τ+1} for τ < t, but not on the

8See the discussion in section 3.4 below.
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history of the external state, or on the history of realizations of the memory noise {ωt+1}.
In what follows, we therefore use the notation mt for the vector of posterior means.9

Among the state variables about which the memory state may convey information, we
are particularly interested in the vector of variables xt = (µ, yt−1)′, which are the states
determined prior to period t that are relevant for predicting the external state in periods
τ ≥ t. Let m̄t ≡ E[xt |mt] be the two elements of the memory state that identify the posterior
mean of xt, and let Σt be the 2× 2 block of second moments of xt under this same posterior,
so that

xt |mt ∼ N(m̄t, Σt).

And let us furthermore introduce the vectors

e′1 ≡ [1 0], c′ ≡ [1− ρ ρ]

to select particular elements of this reduced state vector. Then e′1m̄t is the posterior mean
and e′1Σte1 the posterior variance for µ; while c′m̄t is the posterior mean and c′Σtc the
posterior variance for the full-information forecast Et−1yt.

The posterior mean and variance for µ after also observing yt will then be given by the
usual Kalman filter formulas,

µ̂t ≡ E[µ |st] = e′1m̄t + γ1t [yt − c′m̄t], (2.1)

σ̂2
t ≡ var[µ |st] = e′1Σte1 − γ2

1t[c
′Σtc + σ2

ε ], (2.2)

where the Kalman gain is equal to10

γ1t =
e′1Σtc

c′Σtc + σ2
ε

. (2.3)

Since yt is observed precisely, these formulas completely characterize posterior beliefs in
cognitive state st about the states xt+1 that are relevant for forecasting yτ for all τ > t. Note
that σ̂2

t is necessarily positive (complete certainty about the value of µ cannot be achieved
in finite time, even in the case of perfect memory), and must satisfy the upper bound

σ̂2
t ≤ σ̂2

0 ≡
Ωσ2

y

Ω + σ2
y

, (2.4)

which corresponds to the degree of uncertainty about µ after observing the external state in
the case of no informative memory whatsoever (the DM’s situation in period t = 0).

Then the average losses from inaccurate forecasting in period t are given by

MSEt = σ̂2
t . (2.5)

9Here we assume that we only need to distinguish between different memory states to the extent that they
correspond to different posteriors (that is, their information content is different). We could allow for multiple
memory states corresponding to the same posterior, for example by including an arbitrary random signal as
an additional component of the memory state. But in such a case, the notation for the memory state would
be of redundant complexity, since an optimal decision rule will always prescribe the same behavior in the
case of memory states that imply the same posterior.

10We use a 1 subscript in the notation for this variable because it is the first element of a vector of Kalman
gains, defined in the more general formula given in Appendix B.
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This determines the value of one of the terms in (1.6) as a function of the posterior uncertainty
associated with the memory state each period. We note that the optimal estimate µ̂t depends
only on m̄t (not other components of the memory state), and that the average loss implied
by this estimate depends only on the posterior uncertainty Σt associated with those same
two components.

2.2 The sufficiency of memory of a reduced cognitive state

We further show in the appendix11 that an optimal memory structure makes the memory
state mt+1 a function only of the “reduced cognitive state”

s̄t ≡
[
µ̂t
yt

]
= E[xt+1 |st]. (2.6)

We first note (using (2.1) and the fact that yt is part of the cognitive state) that the elements
of s̄t are a linear function of st. Thus we can choose a representation of the vector st in which
its elements are made up of two parts, s̄t and st, where the elements of st are uncorrelated
with those of s̄t. We then observe that

m̄t+1 = E[s̄t |mt+1].

Hence the only aspect of the memory state that matters for m̄t+1, and hence for determining
both the optimal estimate µ̂t+1 and the reduced cognitive state s̄t+1, will be the information
that mt+1 contains about s̄t.

To the extent that mt+1 conveys any information about the elements of st, this informa-
tion has no consequences for the DM’s estimates µ̂τ in any periods τ ≥ t+1, but it increases
the mutual information between st and mt+1, and hence the information cost c(It). Hence
under an optimal information structure, the reduced memory state m̄t must evolve according
to a law of motion of the form

m̄t+1 = Λ̄ts̄t + ω̄t+1, (2.7)

where ω̄t+1 ∼ N(0, Σω̄,t+1) is distributed independently of the cognitive state. And in
addition, the complete memory state must convey no more information about st than what
is conveyed by the reduced memory state, so that we can without loss of generality assume
that mt+1 consists solely of m̄t+1 (so that dt+1 = 2 for all t ≥ 0).12

Finally, the 2× 2 matrices Λ̄t and Σω̄,t+1 must satisfy additional restrictions in order for
the reduced memory state defined in (2.7) to be consistent with the normalization

E[s̄t |m̄t+1] = m̄t+1. (2.8)

11See Appendix C for details of the argument.
12Note that this is not the unique solution to the problem posed at the end of the previous section, since we

can add additional elements to the vector mt+1, each of which is a linear function of m̄t+1 plus independent
random noise, without changing either It or the inferences that are drawn from the memory state in period
t + 1. However, adding such additional elements to the memory state simply makes the representation of
the memory state redundant, without changing the implications for observable behavior. Thus we assume
that the memory state consists solely of the reduced memory state m̄t+1.
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We show in the appendix that this relationship will hold if and only if13

Σω̄,t+1 = (I − Λ̄t)XtΛ̄
′
t, (2.9)

where Xt ≡ var[s̄t]. Note that (2.6) implies that

var[xt+1] = var[s̄t] + var[xt+1 |st],

from which we see that

Xt = X(σ̂2
t ) ≡

[
Ω− σ̂2

t Ω
Ω Ω + σ2

y

]
. (2.10)

Thus the matrix Xt depends only on the value of σ̂2
t . In addition, (2.4) implies that Xt will

be positive semi-definite (p.s.d.), and non-singular (hence positive definite) except in the
case that σ̂2

t = σ̂2
0 (the case of a totally uninformative memory state mt).

In order for it to be possible for (2.9) to hold, the matrix Λ̄t must satisfy certain properties:
(a) the matrix Λ̄tXt = XtΛ̄

′
t must be symmetric (so that the right-hand side of (2.9) is also

symmetric); and (b) the right-hand side of (2.9) must be a p.s.d. matrix. For any symmetric,
positive definite 2×2 matrix Xt, we let L(Xt) be the set of matrices Λ̄t with these properties.
Then in addition to assuming that Λ̄t ∈ L(Xt), the variance matrix Σω̄,t+1 must be given by
(2.9).

In the special case in which mt is completely uninformative, µ̂t is proportional to the
observation yt, so that there exists a vector w >> 0 such that s̄t = w · yt. In this case,

Xt = X0 ≡ [Ω + σ2
y ]ww

′,

and we can show that the requirements stated above are satisfied by a matrix Λ̄t if and only
if Λ̄tw = λtw (w is a right eigenvector), with an eigenvalue satisfying 0 ≤ λt ≤ 1. Since the
two elements of s̄t are perfectly collinear in this case, the only part of the matrix Λ̄t that
matters for the evolution of the memory state is the implied vector Λ̄tw (which must be a
multiple of w). Thus we can without loss of generality impose the further restriction that if
σ̂2
t = σ̂2

0, we will describe the dynamics of the memory state using a matrix Λ̄t of the form

Λ̄t = λt
ww′

w′w
, (2.11)

for some 0 ≤ λt ≤ 1. We now adopt this more restrictive definition of the set L(X0) in this
special case.14

We have now shown that the memory structure for period t is completely determined by
a specification of a matrix Λ̄t ∈ L(Xt). In any period t, the value of σ̂2

t and hence the matrix
Xt will be implied by the choice of memory structure for the periods prior to t. Given a
choice of Λ̄t, the variance-covariance matrix Σω̄,t+1 is uniquely determined by (2.9). As shown

13See the introductory section of Appendix D for details of the argument.
14Restricting the set of transition matrices Λ̄t that may be chosen in this way has no consequences for the

evolution of the memory state, but it makes equation (2.12) below also valid in the case that Xt = X0, and
thus it allows us to state certain conditions below more compactly.
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in the appendix,15 this then uniquely determines Σt+1, indicating the degree of uncertainty
implied by the memory state mt+1, which then determines σ̂2

t+1 using (2.2). The degree of
uncertainty about µ in the following period is then given by a function of the form

σ̂2
t+1 = f(σ̂2

t , Λ̄t),

that is uniquely defined for any non-negative σ̂2
t satisfying the bound (2.4) and any Λ̄t ∈

L(X(σ̂2
t )).

Then given that we start from an initial degree of uncertainty σ̂2
0 at time t = 0 defined

by (2.4), we can define the class of sequences {Λ̄t} for all t ≥ 0 with the property that
Λ̄t ∈ L(Xt) for all t ≥ 0; let us call this class Lseq. Moreover, for any sequence of transition
matrices in Lseq, we can uniquely define the sequences of values {Σt, γ1t, σ̂

2
t , Xt} for all t ≥ 0

implied by it. Thus given any sequence {Λ̄t} ∈ Lseq, we can calculate the implied sequence
of losses {MSEt} from forecast inaccuracy, using (2.5).

We can also uniquely identify the information cost implied by such a sequence of transition
matrices, since as shown in the appendix,16 the mutual information between st and mt+1 will
be given by

It = −1

2
log det(I − Λ̄t) (2.12)

each period. Note that the requirement that Λ̄t ∈ L(Xt) implies that

0 < det(I − Λ̄t) ≤ 1,

so that the quantity (2.12) is well-defined, and necessarily non-negative. As the elements of
Λ̄t are made small, so that memory ceases to be very informative about the prior cognitive
state, I− Λ̄t approaches the identity matrix, and It approaches zero. If Λ̄t is varied in such a
way as to make one of its eigenvalues approach 1, I − Λ̂t approaches a singular matrix, and
Σω̂,t+1 must approach a singular matrix as well; this means that in the limit, some linear
combination of the elements of s̄t is a random variable with positive variance that comes to
be recalled with perfect precision. In this case, det(I − Λ̂t) approaches zero, so that It grows
without bound.

Thus a given sequence of transition matrices {Λ̄t} uniquely determines sequences {MSEt, It},
allowing the value of the objective (1.6) to be calculated. The problem of optimal design of
a memory structure can then be reduced to the choice of a sequence {Λ̄t} ∈ Lseq so as to
minimize (1.6). This objective is necessarily well-defined for any such sequence, since each
of the terms is non-negative; the infinite sum will either converge to a finite value, or will
diverge, in which case the sequence in question cannot be optimal.17

2.3 Optimality of a unidimensional memory state

We can show further that the optimal memory state must have a one-dimensional represen-
tation. Note that in any period t, the Kalman filter (2.1) implies that the optimal estimate

15See Appendix D.1 for details of the argument.
16See Appendix D.2 for details of the argument.
17Note that it is clearly possible to choose memory structures for which the infinite sum converges. For

example, if one chooses Λ̄t = 0 for all t ≥ 0 (perfectly uninformative memory at all times), MSEt = σ̂2
0 and

It = 0 each period, and (1.6) will equal the finite quantity σ̂2
0/(1− β).
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of the unknown value of µ will be given by a linear function of elements of the cognitive state
of the form

µ̂t = ξt + δ′tm̄t. (2.13)

It follows from this that the only information in the memory state mt that matters for the
estimate µ̂t is the single quantity δ′tm̄t.

Now consider any memory structure specified by a sequence of transition matrices {Λ̄t} ∈
Lseq. We wish to show that we can choose an alternative memory structure in which the
transition matrix each period is of the special form

Λ̄t = λtXtvtv
′
t, (2.14)

where λt is a scalar satisfying 0 ≤ λ ≤ 1 and vt is a vector normalized to satisfy v′tXtvt = 1,
for which the value of the objective (1.6) will be no higher, and indeed will be strictly lower
unless the original sequence of matrices were already of this special form. We show in the
appendix18 that any matrix of the form (2.14) belongs to L(Xt), so that the alternative
sequence represents a possible memory structure, but one in which in each period m̄t+1 =
Xtvtm̃t+1, where m̃t+1 is a unidimensional memory state with a law of motion

m̃t+1 = λtv
′
ts̄t + ω̃t+1, ω̃t+1 ∼ N(0, λt(1− λt)). (2.15)

In the case that t is a period in which the memory state mt is completely uninformative
(either because t = 0 or Λ̄t−1 = 0), then the requirement that Λ̄t ∈ L(X0) already implies
that Λ̄t is of the form (2.14) because of (2.11), with

vt =
w

(Ω + σ2
y)

1/2(w′w)
. (2.16)

Hence we need not change the specification of the memory structure in any such period in
order to obtain the desired form. Similarly, in any period in which Xt is of full rank, but
Λ̄t is singular, then the requirement that Λ̄t ∈ L(X0) already implies that Λ̄t must be of the
form (2.14). Thus we can restrict attention to the way that Λ̄t must be modified in periods
where Xt is of full rank and the proposed transition matrix Λ̄t is of full rank as well.

In such a case, consider the alternative memory structure in which Λ̄t is replaced by an
alternative transition matrix of the form (2.14), with

λt =
δ′t+1Λ̄tXtΛ̄

′
tδt+1

δ′t+1XtΛ̄′tδt+1

, vt =
Λ̄′tδt+1

(δ′t+1Λ̄tXtΛ̄′tδt+1)1/2
,

where δt+1 ≡ e1 − γ1,t+1c is the vector introduced in (2.13), and the matrix Σω̄,t+1 is cor-
respondingly modified in the way specified by (2.9). We show in the appendix19 that this
specification implies that 0 ≤ λt ≤ 1, so that this alternative matrix also belongs to L(Xt).
Moreover, the new memory structure implies a conditional distribution

δ′t+1m̄t+1|st ∼ N(δ′t+1Λ̄ts̄t, δ
′
t+1Σω̄,t+1δt+1)

18See the introductory section of Appendix D for details of the argument.
19See Appendix D for details of the argument.
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that is the same as under the original memory structure. This implies that the optimal
estimate µ̂t+1 conditional on the cognitive state st+1 will be the same function of m̄t+1

and yt+1 in the case of the new memory structure, and that the conditional distribution
µ̂t+1|st, yt+1 will be the same. Hence the matrix of second moments Xt+1, that determines
the set of possible transition matrices Λ̄t+1, will also be the same as before.

It follows, then, that if in every period t in which Λ̄t was not already of the form (2.14),
we replace it by a matrix of this form in the way specified in the previous paragraph, the
resulting sequence of memory structures leads to exactly the same joint distribution for µ
and the sequences {yt, µ̂t} for all t ≥ 0. This in turn means that the implied sequence of
uncertainty measures {σ̂2

t } will be the same for all t ≥ 0, and hence that this reduction in
the complexity of memory makes no difference for the sequence of losses {MSEt}.

At the same time, we show in the appendix that the reduction in the complexity of
memory cannot increase information costs in any period.20 The new memory structure
consists effectively of a scalar memory state m̃t+1 in each period, which is a multiple of
d′t+1m̄t+1, a particular linear combination of the elements of the memory state under the
previous memory structure. Hence the information about s̄t that is revealed by mt+1 under
the new memory structure (i.e., that is revealed by m̃t+1) is also information that was revealed
by m̄t+1 under the previous memory structure; thus the value of It under the previous memory
structure must have been at least as large as under the new memory structure. In fact, the
only case in which the mutual information will not be reduced by the proposed modification
of the memory structure is if all elements of m̄t+1 were multiples of d′t+1m̄t+1; which is to
say, only if Λ̄t+1 were already of the special form (2.14).

We conclude, then, that an optimal memory structure — one that minimizes the objective
(1.6) — must involve a transition matrix in every period of the special form (2.14), so that
the memory state each period can be represented by a scalar quantity m̃t. The choice of
memory structure can then be reduced to a problem of choosing, in each period t ≥ 0, a
scalar quantity 0 ≤ λt ≤ 1, and the direction of a vector vt (the length of which will then be
chosen each period so as to ensure that v′tXtvt = 1); the values chosen for these quantities
then determine the law of motion for the unidimensional memory state m̃t+1, specified by
(2.15). This in turn determines the elements of the matrix Σt+1, and hence the value of
the gain coefficient γ1,t+1 in the Kalman filter formula (2.1) and the value of σ̂2

t+1, which
determines the matrix Xt+1 = X(σ̂2

t+1).
For any value 0 ≤ σ̂2

t < σ̂2
0, let V(σ̂2

t ) be the set of vectors vt satisfying v′tX(σ̂2
t )vt = 1. In

the case that σ̂2
t = σ̂2

0, we add the further stipulation that V(σ̂2
0) consists only of the single

vector (2.16). Then given a value for σ̂2
t , determined by the memory structures for periods

τ < t, the memory structure for period t is specified by a scalar quantity 0 ≤ λt ≤ 1 and a
vector vt ∈ V(σ̂2

t ). These determine a value for σ̂2
t+1 = f(σ̂2

t , λt, vt), where now the function f
is defined for any values of its arguments satisfying 0 ≤ σ̂2

t ≤ σ̂2
0, 0 ≤ λt ≤ 1, and vt ∈ V(σ̂2

t ).
Moreover, it follows from (2.12) that the mutual information associated with the period t
memory structure will be given by

It = −1

2
log(1− λt). (2.17)

Hence for any sequences of values {λt, vt} satisfying the feasibility constraints for all t ≥
20See Appendix E for details of the argument.
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0, there will be a uniquely determined implied sequence {σ̂2
t }, and consequently uniquely

determined sequences {MSEt, It} that allow the value of the objective (1.6) to be computed.
The problem of optimal memory design then reduces to the choice of (λt, vt) each period so
as to minimize (1.6).

2.4 A recursive formulation

We now observe that if for any point in time t, we know the value of σ̂2
t (which depends

on the choices made regarding memory structure in periods τ < t), the set of admissible
sequences {λτ , vτ} for τ ≥ t specifying the memory structure from that time onward will
depend only on the value of σ̂2

t , and not any other aspect of choices made about the earlier
periods. (A memory structure for period t is admissible as long as 0 ≤ λt ≤ 1 and vt ∈ V(σ̂2

t );
any admissible choice implies a value for σ̂2

t+1 = f(σ̂2
t , λt, vt); the value of σ̂2

t+1 defines the
set of admissible memory structures for period t + 1; and so on.) Moreover, any admissible
continuation sequence {λτ , vτ} for τ ≥ t implies unique continuation sequences {MSEτ , Iτ}
for τ ≥ t, so that the value of the continuation objective

∞∑
τ=t

βτ−t [α ·MSEτ + c(Iτ )] (2.18)

in the case of this choice of memory structures from period t onward will be well-defined.21

We can then consider the problem of choosing an admissible continuation plan {λτ , vt}
for τ ≥ t so as to minimize (2.18), given an initial condition for σ̂2

t . (This is simply a more
general form of our original problem choosing memory structures for all t ≥ 0 to minimize
(1.6), given the initial condition for σ̂2

0 specified in (2.4).) Let V (σ̂2
t ) be the lowest achievable

value for (2.18), as a function of the initial condition σ̂2
t ; this function is defined for any value

of σ̂2
t satisfying the bound (2.4), and is independent of the date t from which we consider

the continuation problem. Note that the lower bound necessarily lies in the interval

ασ̂2
t ≤ V (σ̂2

t ) ≤ α

[
σ̂2
t +

β

1− β σ̂
2
0

]
. (2.19)

(The lower bound follows from the fact that MSEt = σ̂2
t , and all other terms in (2.18) must

be non-negative; the upper bound is the value of (2.18) if one chooses λτ = 0 for all τ ≥ t,
which is among the admissible continuation plans.)

This value function also necessarily satisfies a Bellman equation of the form

V (σ̂2
t ) = min

0≤λt≤1,vt∈V(σ̂2
t )

[ασ̂2
t + c(−(1/2) log(1− λt)) + βV (f(σ̂2

t , λt, vt))]. (2.20)

Thus once we know how to compute the value function for arbitrary values of σ̂2
t+1, the

problem of the optimal choice of a memory structure in any period t can be reduced to the

21The infinite sum may diverge, but because all terms are non-negative we can state unambiguously
that the continuation value of the objective is +∞ under such a plan. Moreover, since a finite value for
the continuation objective is always possible (see (2.19) below), it is clear that plans that make (2.18) a
divergent series cannot be optimal, and can be excluded from consideration.
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one-period optimization problem stated on the right-hand side of (2.20). This indicates how
the parameters (λt, vt) must be chosen to trade off the cost c(It) of retaining a more precise
memory in period t against the continuation loss V (σ̂2

t+1) from having access to a less precise
memory in period t+ 1.

Let F be the class of continuous functions V (σ̂2
t ), defined for values of σ̂2

t consistent with
(2.4), and consistent with the bounds (2.19) everywhere on this domain. Then (2.20) defines
a mapping Φ : F → F : given any conjectured function V (σ̂2

t+1) ∈ F that is used to evaluate
the right-hand side for any value of σ̂2

t , the minimized value of the problem on the right-hand
side defines a new function Ṽ (σ̂2

t ) that must also belong to F . Condition (2.20) states that
the value function that defines the minimum achievable continuation loss must be a fixed
point of this mapping: a function such that V = Φ(V ).

This then provides us with an approach to computing the optimal memory structure
for a given parameterization of our model. First, we find the value function V (σ̂2) ∈ F
that is a fixed point of the mapping Φ, by iterating Φ to convergence. Then, given the
value function, we can numerically solve the minimization problem on the right-hand side of
(2.20) to determine the optimal memory structure (λt, vt) in any period, once we know the
value of σ̂2

t for that period. Solution of this problem also allows us to determine the value of
σ̂2
t+1 = f(σ̂2

t , λt, vt), so that the entire sequence of values {σ̂2
τ} for all τ ≥ t can be determined

once we know σ̂2
t . Finally, we recall that for the initial period t = 0, the value of σ̂2

0 is given
by (2.4); we can thus solve for the entire sequence {σ̂2} for all t ≥ 0 by integrating forward
from this initial condition.

Once we have determined the sequence of values {σ̂2
t } implied by an optimal memory

structure for each period, we can determine the elements of the matrix Xt = X(σ̂2
t ) each

period, using (2.10). We show in the appendix22 that the degree of uncertainty at the
beginning of any period given the structure of the memory chosen for the previous period is
given by

Σt+1 = Σ0 − XtΛ̄
′
t = Σ0 − λt(Xtvt)(Xtvt)

′.

This in turn allows us to calculate the DM’s optimal estimate µ̂t each period, as a function
of the history of realizations {yτ} of the external state for all 0 ≤ τ ≤ t and the history of
realizations of the DM’s memory noise {ω̃τ+1} for all 0 ≤ τ ≤ t− 1, using (2.1). The DM’s
complete vector of forecasts zt each period is then given by (1.3).

3 Features of the Model Solution

Here we provide numerical examples of solutions for an optimal memory structure, under
alternative assumptions about both the degree of persistence of the process that must be
forecasted and the nature of the information cost function. In reporting our results, it is
useful to describe the model solution in terms of scale-invariant quantities — that is, ones
that are independent of the value of σy, indicating the amplitude of the transitory fluctuations
in the external state around its mean. Thus we parameterize the degree of prior uncertainty
about µ not in terms a value for Ω (the variance of the prior distribution for µ), but rather by
a value for K ≡ Ω/σ2

y (the variance of the prior distribution for µ/σy). We similarly measure

22See Appendix D.1 for details of the argument.
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the degree of uncertainty about µ conditional on the cognitive state at a given point in time
(i.e., after a given amount of experience) not in terms of the value of σ̂2

t , but rather by the
scaled uncertainty measure ηt ≡ σ̂2

t /σ
2
y.

In terms of this scaled uncertainty measure, an optimal memory structure minimizes the
value of

∞∑
t=0

βt [ηt + c̃(It), ]

a scaled version of (1.6), where the scaled cost function is defined as c̃(I) ≡ c(I)/(ασ2
y).

(Dividing by α further reduces the numbers of parameters that we need to specify in con-
sidering the different possible forms that the optimal memory structure may take, since it
is only the relative weights on the two loss terms in the objective (1.6) that matter for the
optimal memory structure.) Our scale-invariant model is then completely specified by values
for the parameters ρ, β,K and the scaled cost function c̃(I). In our quantitative analysis,
we assume that each “period” of our discrete-time model corresponds to a quarter of a year
(the variable to be forecasted is a quarterly time series), and hence set β = 0.99 (implying
a discount rate of 4 percent per annum). We consider a variety of values 0 ≤ ρ < 1 for the
assumed degree of serial correlation of the external state, and explore the effects of different
assumptions regarding the degree of prior uncertainty and the size of information costs.

3.1 The case of a fixed per-period bound on mutual information

We begin by considering the case in which c̃(I) = 0 for all I ≤ Ī , but the cost is infinite for
any value I > Ī. (That is, there is a fixed upper bound on the possible mutual information
between st and mt+1 in each period; but any memory structure consistent with this bound
is equally feasible and has the same cost.) Here Ī is some finite positive quantity. Solution
for the optimal memory structure is particularly simple in this case. Given that V (σ̂2

t ) is a
monotonically increasing function, it is clear that given a degree of uncertainty σ̂2

t associated
with the period t cognitive state, one wishes to choose a memory structure in period t so as to
minimize the implied value of σ̂2

t+1, consistent with the bound It ≤ Ī . (There is no trade-off
to consider between economizing on information costs in period t and reducing forecasting
errors later.)

Because of (2.17), the per-period bound on mutual information can equivalently be writ-
ten as an upper bound λt ≤ λ̄, where

λ̄ ≡ 1 − e−2Ī > 0.

The optimal memory structure in period t is then given by the (λt, vt) that solve the static
problem

min
λt,vt

f(σ̂2
t , λt, vt),

where the minimization is over values of the arguments satisfying 0 ≤ λt ≤ λ̄ and vt ∈ V(σ̂2
t ).

We show in the appendix23 that the minimizing value of λt is necessarily the largest feasible
value; hence in the solution to this problem, λt = λ̄, the value determined by the per-period

23See Appendix F.1 for details of the argument.
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Section 3.1 The case of a fixed per-period bound on mutual information

Figure 1: The evolution of scaled uncertainty about µ
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Figure 2: Coefficients describing the optimal memory structure in the long run, as a function of the degree of persistence
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Figure 1: The evolution of scaled uncertainty about µ as the number t of previous (im-
perfectly remembered) observations grows. The right panel shows the long-run value of
scaled uncertainty (to which ηt converges as t → ∞) as a function of the constraint on the
complexity of memory, parameterized by λ̄.

information bound. We can then characterize the optimal memory structure more simply as
the solution to the problem

min
vt∈V(σ̂2

t )
f(σ̂2

t , λ̄, vt). (3.1)

We further show in the appendix that the objective function in (3.1) can alternatively be
written as

f(σ̂2
t , λt, vt) = σ2

y · f̃(ηt, λt, ṽt),

where ṽt ≡ σy · vt, and the function f̃ is independent of the size of σy. Moreover, the set of
vectors ṽt such that σ−1

y ṽt ∈ V(σ2
y · ηt) is independent of the size of σy, for a given value of

ηt. Hence the problem of choosing an optimal vector ṽt can be written in a scale-invariant
form, and the solution is given by a policy function ṽt = ṽ∗(ηt; λ̄) that is independent of the
size of σy.

24 The implied degree of uncertainty in the next period’s cognitive state is then
given by

ηt+1 = φ(ηt; λ̄), (3.2)

where
φ(η; λ̄) ≡ f̃(η, λ̄, ṽ∗(η; λ̄))

is a function that is independent of the scale factor σy.
For any value of λ̄ indicating the tightness of the constraint on the complexity of memory,

equation (3.2) indicates how the DM’s degree of uncertainty about µ evolves as additional

24The value of this function also depends on the values of the parameters ρ and K, which we do not write
explicitly as arguments. We write λ̄ as an argument of the function because we are interested in considering
how the solution changes with changing values for λt, when we endogenize λt below.
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observations of the external state are made. Starting from the initial condition η0 = K/(K+
1) implied by (2.4), the law of motion (3.2) can be iterated to obtain a unique solution for
the complete sequence of values {ηt} for all t ≥ 0. In the limiting case λ̄ = 1 (unlimited
memory), we show that an analytical solution is possible for (3.2), namely the difference
equation

1

ηt+1

=
1

ηt
+

1− ρ
1 + ρ

. (3.3)

This is simply the standard result for the linear growth in posterior precision under Bayesian
updating as additional observations are made; it has the implication that ηt declines mono-
tonically, and converges to zero for large t. Thus in the case of perfect memory, the DM
should eventually learn the value of µ with perfect precision, and hence make forecasts of
the kind implied by the hypothesis of rational expectations.

When λ̄ > 0, instead, the law of motion (3.2) implies that ηt should decrease initially, as
even imprecise memory of the DM’s observations of the external state reduces uncertainty
to some degree, but that ηt remains bounded away from zero, and converges to a value
η∞(λ̄) > 0. This is illustrated in Figure 1, which shows the dynamics implied by (3.2) for
each of several different values of λ̄, in the case that ρ = 0 and K = 1.25 The left panel plots
the sequence of values {ηt} implied by (3.2) for a given value of λ̄. (Note that the initial
value η0 is the same in each case.) The right panel shows the value η∞ to which the sequence
converges as t grows; this value depends on λ̄, and the functional relationship between λ̄
and this limiting degree of uncertainty can be described by a function η∞(λ̄), plotted as a
smooth curve in the right panel of the figure.

In the case that λ̄ = 1 (shown as a dashed curve in the left panel of Figure 1), the sequence
{ηt} decreases monotonically to zero at the rate predicted by the difference equation (3.3).
But for any number of prior observations t > 0, the value of ηt remains higher the lower is λ̄
(that is, the tighter the memory constraint), and the long-run degree of uncertainty about
µ, measured by η∞, is a decreasing function of λ̄ as well, as shown by the curve in the right
panel of the figure. Because of the limit on the amount of information that can be retained
in memory, the DM’s uncertainty about the value of µ never falls below a certain level,
even in the long run, despite our assumption that the value of µ is fixed for all time. We
further observe that the long-run degree of uncertainty η∞ is larger, the smaller is λ̄ (that
is, the tighter the constraint on memory). In the limit as λ̄ approaches zero (corresponding
to a constraint that memory must be completely uninformative), the long-run degree of
uncertainty η∞ approaches the prior degree of uncertainty η0 = K/(K + 1).

As ηt falls along one of these trajectories, the optimal direction vector vt implied by the
solution to (3.1) shifts as well. As ηt converges to the long-run value η∞, the direction vector
vt similarly converges to a long-run value v∞, indicating the particular linear combination of
µ̂t and yt that is imprecisely recorded in memory each period. Associated with this stationary
long-run memory structure there will also be a stationary long-run value for the Kalman gain
coefficient γ1 in equation (2.1), and more generally, stationary values for the coefficients of

25The effects of variation in the parameters ρ and K are illustrated in additional figures shown in Appendix
F [still to be added]. We use the parameterization K = 1 in the figures shown in the text because this value
allows a reasonably good fit of the predictions shown in Figure 10 below with the experimental evidence
reported by Landier et al. (2020).
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Section 3.1 The case of a fixed per-period bound on mutual information

Figure 1: The evolution of scaled uncertainty about µ
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Figure 2: Coefficients describing the optimal memory structure in the long run, as a function of the degree of persistence
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The top-right panel shows the direction of the vector v∞, and the bottom-right panel shows the ”intrinsic” persistence
derived as ρm ≡ λ∞(e′1v∞) (e′1 − γ1c)X∞v∞.

2

Figure 2: Coefficients describing the optimal memory structure in the long run, as a function
of the degree of persistence ρ of the external state, for alternative values of λ̄. Respective
panels show the long-run values for η (measuring uncertainty about µ), the direction vector
v (indicating the content of the memory state), the Kalman gain γ1 (for updating the DM’s
estimate of µ), and ρm (measuring the intrinsic persistence of fluctuations in the memory
state).

the linear difference equations describing the joint dynamics {yt, m̃t} of the external state
and the memory state.

These long-run stationary coefficients will depend on the value of λ̄ (indicating the tight-
ness of the memory constraint) and also on the value of ρ (indicating the degree of persistence
of the fluctuations in the external state). Figure 2 indicates how variation in each of these
parameters affects several of the long-run stationary coefficients. In each panel, a curve
shows how the coefficient in question varies as a function of ρ (for values of ρ between 0.0
and 0.9), for a given value of λ̄; curves of this kind are shown for each of three different values
of λ̄, ranging between λ̄ = 0.95 (in which case memory is relatively precise) and λ̄ = 0.30 (in
which case it is much more constrained). All of the curves shown in Figure 2 are again for
the case of prior uncertainty K = 1.

The upper-right panel of the figure shows the long-run direction vector v∞; the quantity
reported on the vertical axis is the long-run value of the ratio v2/v1 of the vector’s two
components.26 Thus a value of −0.3 for this quantity means that the univariate memory
state m̃t+1 is (up to a multiplicative factor that does not affect its information content) equal
to the value of µ̂t − 0.3yt, plus additive Gaussian noise. The figure shows that when ρ = 0,
the optimal univariate memory state involves v2 = 0; that is, only the current estimate

26This information (together with the value of η∞ given in the upper left panel) suffices to completely
determine the vector vt, since the vector is normalized so that v′Xv = 1. The value of λ (given by the
constraint λ̄), the matrix X (determined by the value of η∞), and the vector v then completely determine
the long-run stationary elements of the matrix Λ̄ (using (2.14)) and hence also of the matrix Σω̄ (using (2.9));
thus the dynamics of the memory state given by (2.7) are completely specified.
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µ̂t of the unknown mean is remembered with noise, with the current observation yt being
completely forgotten. This is optimal because when ρ = 0, the current value yt contains no
information that is relevant for improving subsequent forecasts of the external state, except
to the extent that it helps to improve the DM’s estimate of µ (which information is already
reflected in the estimate µ̂t). Instead, when the external state is serially correlated, it is
optimal to commit to memory a linear combination of µ̂t and the current state yt; in the
case that ρ > 0, the optimal linear combination puts a negative relative weight on yt, to an
extent that is greater the greater the degree of serial correlation, and greater the tighter the
constraint on memory.

The upper-left panel of the figure shows the long-run degree of uncertainty about µ,
measured by η∞. As shown in Figure 1, when ρ = 0, η∞ is a decreasing function of λ̄. We
see in Figure 2 that this is also true when ρ > 0. However, for a given memory constraint
λ̄, the long-run value η∞ is also an increasing function of ρ, with the degree of increase
when the external state is highly persistent being particularly notable when memory is more
accurate. The greater the serial correlation of the state, the fewer the effective number
of independent noisy observations of µ that the DM receives over any finite time period;
thus even under perfect Bayesian updating, equation (3.3) indicates that the rate at which
precision is increased by each additional observation is smaller the larger is ρ. In the case
of perfect memory, the long-run degree of uncertainty about µ is nonetheless zero (there
is simply slower convergence to that long-run value when ρ is large); but with moderately
imperfect memory, the effective amount of experience that can ever be drawn upon remains
bounded, so that the uncertainty about µ remains larger forever when ρ is larger. When
memory is even more imperfect, not much more than one observation (the most recent one)
can be used in any event, so that the value of η∞ is in this case less sensitive to the value of
ρ.

In the long run, the dynamics of the cognitive state s̄t and the memory state m̄t+1 are
described by linear equations with constant coefficients. The lower-left panel of Figure 2
shows the long-run value for the Kalman gain γ1t in (2.1). With imperfect memory, this is
always a quantity between 0 and 1, meaning that a higher value of the current state yt raises
the DM’s estimate of the value of µ, though by less than the amount of the increase in yt.
For a given value of ρ, the Kalman gain is larger the tighter the constraint on memory; in the
limit as λ̄ → 1 (perfect memory), the long-run value of this coefficient approaches zero (as
the true value of µ is eventually learned), while in the limit as λ̄→ 0 (no memory), the value
approaches a maximum value that is still less than one (because of the DM’s finite-variance
prior).

Finally, the lower-right panel reports the long-run value of ρm, a measure of the intrinsic
persistence of the memory state. The impulse response function for the effect of a memory-
noise innovation ω̃t on the subsequent path of the univariate memory state m̃τ is proportional
to (ρm)τ−t for all τ ≥ t;27 thus the value of ρm indicates the rate of exponential decay of
the memory state back to its long-run average value. A smaller value of ρm means that
the contents of memory decay more rapidly; for any value of ρ, the figure shows that ρm

27Here we refer to the difference that the realization of ω̃t makes for the forecasts of m̃τ at different horizons
τ ≥ t, by an observer who knows the true value of µ and the DM’s cognitive state at time t− 1, in addition
to observing the realization of ω̃t. See Appendix G.1 for details of the calculation.
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The case of a linear cost of information

Figure 3: The optimal policy function λ∗(η)
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Figure 4: The dynamics of scaled uncertainty and memory precision
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Figure 3: The optimal policy function λ∗(η), in the case of progressively larger values for
the information cost parameter θ̃, under the assumption that K = 1, ρ = 0.

is smaller, the tighter the memory constraint. At the same time, while a larger value of
ρm implies that memory persists for a longer time, it also implies that when memory noise
creates an erroneous impression of prior experience, this bias in what is recalled about is also
corrected more slowly; thus the value of ρm is an important determinant of the predicted
persistence of forecast bias.

3.2 The case of a linear cost of information

Analysis of the model is more complex when instead the amount of information stored in
memory each period can be increased at some finite cost. As an illustration we consider the
polar opposite case in which c̃(I) is a linear function of I, so that the marginal cost of a
further increase in the mutual information is independent of how large it already is. Thus we
assume that c̃(I) = θ̃ · I, for some coefficient θ̃ > 0 which parameterizes the cost of memory.

Even in this case, the optimal choice for the direction vector vt each period will be given
by the solution to the problem (3.1), except with the quantity λ̄ replaced by whatever value
of λt is chosen in period t. (This follows from the fact that the continuation value V (σ̂2

t+1)
depends only on the value for σ̂2

t+1 implied by the memory structure chosen for period t,

while the information cost θ̃It depends only on the choice of λt.) Thus an optimal memory
structure will involve ṽt = ṽ∗(ηt;λt) each period.

However, the optimal choice of λt in any period will depend on the value of reducing
uncertainty in the following period. We note that the value function V (σ̂2

t+1) appearing in

the Bellman equation (2.20) can be written as σy ·Ṽ (ηt+1), where ηt+1 is the scaled uncertainty
measure and the function Ṽ (η) is independent of the scale factor σy (for given values of the
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The case of a linear cost of information

Figure 3: The optimal policy function λ∗(η)
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Figure 4: The dynamics of scaled uncertainty and memory precision
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Figure 4: The dynamics of scaled uncertainty ηt and memory precision λt graphed in the
phase plane. The left panel gives an alternative graphical presentation of the dynamics
already plotted in Figure 2 for the case of a fixed upper bound λ̄ on memory precision.
The right panel shows the corresponding dynamics in the case of a linear cost of precision
parameterized by θ̃.

parameters K, ρ, β and θ̃). We can then write the Bellman equation in the scale-invariant
form

Ṽ (ηt) = min
0≤λt≤1

{
ηt −

θ̃

2
log(1− λt) + βṼ (φ(ηt;λt))

}
. (3.4)

The optimal choice of λt in any period will be the value that solves the problem on the
right-hand side of (3.4). This problem has a solution λt = λ∗(ηt) which depends only on
the value of ηt, the degree of uncertainty in period t determined by the memory structures
chosen for periods prior to t.

Thus we can solve for the optimal policy function λ∗(ηt) once we know the value function
Ṽ (ηt+1), and we can solve numerically for the value function by iterating the Bellman equa-
tion (3.4), as discussed further in the appendix.28 Figure 3 provides examples of numerical
solutions for the policy function in the case of a range of different values of θ̃, where we
maintain the parameter values K = 1, ρ = 0 as in Figure 1. When θ̃ = 0 (no cost of memory
precision), it is optimal to choose λt = 1 (perfect memory) in all cases. But for any value of
η, the optimal λ∗(η) < 1 when θ̃ > 0 (since in this case, perfect memory becomes infinitely
costly); furthermore it is lower (memory is more imperfect) the higher is θ̃. We also see that
for any cost parameter θ̃ > 0, the optimal λ∗(η) is a decreasing function of η. This indicates
that the less accurate the information contained in the cognitive state st (as indicated by the
higher value of ηt), the less information about the cognitive state that it will be optimal to
store in memory, when the memory cost can be reduced by storing a less informative record.

28See Appendix F.2 for details.
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The policy function λt = λ∗(ηt) together with the law of motion

ηt+1 = φ(ηt;λt) (3.5)

derived earlier can then be solved for the dynamics of the scaled uncertainty {ηt} for all
t ≥ 0, starting from the initial condition η0 = K/(K + 1). The dynamics implied by these
equations can be graphed in a phase diagram, as illustrated in Figure 4. In the phase
diagrams shown in each of the two panels, the value of ηt is indicated on the horizontal
axis and the value of λt on the vertical axis. Equation (3.5), which holds regardless of the
nature of the information cost function and the degree to which the future is discounted,
determines a locus η∞(λ), indicating for each value of λ the unique value of η that will be a
fixed point of these dynamics if λt is held at the value λ. We can further show that whenever
ηt < η∞(λt), the law of motion (3.5) implies that ηt+1 > ηt, so that uncertainty will increase,
while if ηt > η∞(λt), it implies instead that ηt+1 < ηt, so that uncertainty will decrease.

The choice of λt (and hence the degree to which uncertainty will increase or decrease) is
given by the policy function, that depends on the specification of information costs. When
there is a fixed upper bound on information (the case discussed in the previous subsection),
the policy function is just a horizontal line at the vertical height λ̄, as shown in the left
panel of the figure.29 In this case, the values of (ηt, λt) in successive periods start at the
point (η0, λ̄), labeled “t = 0” in the figure, and then move left along the graph of the
policy function (since η0 > η∞(λ̄) as shown). They continue to move left along the policy
function, with ηt converging asymptotically to η∞(λ̄) from above; the stationary long-run
values (η∞, λ∞) correspond to the point at which the policy function λ = λ̄ intersects the
locus of fixed points η∞(λ).

The right-hand panel of the figure shows the corresponding phase-plane dynamics in the
less trivial case of a linear cost function for information. In this case, the policy function
is instead a downward-sloping curve, as shown in Figure 3.30 Again the values of (ηt, λt)
in successive periods must always lie on the graph of the policy function; the direction of
motion up or down this curve depends on whether the current position lies to the left or
right of the locus of fixed points η∞(λ). The initial point (labeled “t = 0”) is determined
as the point on the policy curve with horizontal coordinate given by the initial condition η0.
Since this point lies to the right of the locus of fixed points, the points for successive periods
move up and to the left on the policy curve, meaning that λt rises as ηt falls.

The scaled uncertainty continues to fall, and the precision of memory continues to rise,
until the values (ηt, λt) converge to stationary long-run values (η∞, λ∞), again corresponding
to the point at which the policy function λ∗(η) intersects the locus of fixed points η∞(λ).
Note that convergence is slower in the right panel of the figure than in the left, because in
the early periods, when uncertainty is high, a less precise memory is chosen in the linear-cost
case, resulting in slower learning from experience.

29The figure plots the location of this line for the case λ̄ = 0.8. The figure is drawn for parameter values
K = 1, ρ = 0. Thus the dynamics of uncertainty shown in the figure correspond to the curve labeled λ̄ = 0.8
in Figure 1.

30In the figure, the policy function and the implied dynamics are shown for the case in which θ̃ = 0.2,
corresponding to one of the intermediate curves shown in Figure 3. Again the figure is for the case K =
1, ρ = 0, so that the location of the locus of fixed points η∞(λ) and the law of motion (3.5) remain the same
as in the left panel.
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Figure 5: The evolution of scaled uncertainty about µ
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Figure 6: Coefficients describing the optimal memory structure in the long run, as a function of the degree of persistence
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Figure 5: The evolution of scaled uncertainty about µ as the number t of previous (im-
perfectly remembered) observations grows, now for the case of a linear cost of memory
complexity. The right panel shows the long-run value of scaled uncertainty for each value
of the cost parameter θ̃, plotted as a point on the same locus of optimal long-run memory
structures as in Figure 1.

Different values of θ̃ correspond to different locations for the policy function λ∗(η), as
shown in Figure 3, and hence to different dynamics in the phase plane, converging to different
long-run levels of scaled uncertainty. The dynamics of scaled uncertainty as a function of the
number of observations t are shown for progressively larger values of θ̃ in Figure 5, using the
same format as in Figure 1. Once again, we see that while uncertainty about µ eventually
falls to zero as a result of when there is no cost of memory complexity, as long as the cost is
positive, the value of ηt remains bounded away from zero, and converges asymptotically to
a value η∞ that is higher the higher the cost of memory complexity.

Associated with such an asymptotic degree of uncertainty is a particular long-run memory
structure (λ∞, v∞), which will imply a particular long-run value for the Kalman gain γ1. The
way in which the long-run values of these different quantities vary with different assumptions
about the values of ρ and θ̃ is illustrated in Figure 6. (We use the same convention as in
Figure 2 to indicate the direction of the vector v∞ in the upper-right panel of the figure.)
As we vary ρ for a given value of θ̃, the associated value of λ∞ changes; hence the fixed-θ̃
curves shown in Figure 6 do not correspond exactly to any of the fixed-λ curves plotted in
Figure 2, even though each of the long-run memory structures associated with a pair (ρ, θ̃)
is identical to the long-run memory structure associated with some pair (ρ, λ̄). As shown
in the lower-right panel of the figure, the optimal λ∞ rises as ρ increases, for any value of
the cost parameter θ̃ > 0; the more persistent the external state that must be forecasted,
the more it becomes worthwhile to pay a larger information cost in order to retain a more
precise memory of prior experience.

Not surprisingly, we observe that for any value of ρ, increasing the memory cost θ̃ makes
it optimal for the long-run precision of memory λ∞ to be smaller, and consequently for the
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Figure 5: The evolution of scaled uncertainty about µ
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Figure 6: Coefficients describing the optimal memory structure in the long run, as a function of the degree of persistence
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Figure 6: Coefficients describing the optimal memory structure in the long run, as a function
of the degree of persistence ρ of the external state, in the case of a linear memory cost
function, for alternative values of θ̃. Respective panels show the long-run values for η, the
direction vector v, the Kalman gain γ1, and the memory precision coefficient λ.

long-run degree of uncertainty about µ to be larger. In the case of a sufficiently high value
of θ̃, it will be optimal for memory to be completely uninformative. In fact, this happens
for a finite value of θ̃, and it occurs abruptly, rather than through a gradual increase in
the long-run degree of uncertainty η∞ toward the limiting value of η0 = K/(K + 1) as θ̃ is
increased. A graph of the relationship between η∞ and the value of θ̃ is shown in Figure 7,
for the case ρ = 0, and two different possible values of K: K = 1 (as in Figures 3 and 4) and
K = 10. For each value of θ̃, the value of η∞ associated with the optimal memory structure
is shown by a large blue dot.

In each panel of this figure, the continuous black curve is the correspondence consisting of
all points (θ̃, η∞) such that η∞ is a stationary solution of the Euler equation associated with
the optimization problem on the right-hand side of (3.4).31 The Euler equation represents a
first-order condition for the optimal choice of the degree of precision of memory; satisfaction
of this condition is necessary but not sufficient for memory precision leading to ηt+1 = η to
be optimal starting from a situation in which ηt = η. Because the objective function on the
right-hand side of (3.4) is not a convex function, it can have multiple local minima (as well as
a local maximum located between two local minima). Which of the local minima represents
the global minimum (and hence the optimal memory structure) can jump abruptly as a
result of a small change in parameters;32 this is what happens when the value of η∞ changes
abruptly in the right panel of Figure 7, for a value of θ̃ slightly above 0.28.

In the K = 10 case, we see that there need not be a unique value of η∞ for a given value
of θ̃ that represents a stationary solution to the Euler equation. For any value of θ̃ greater

31See Appendix F.3 for derivation of this equation.
32See Appendix F.2 for a numerical example.
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Figure 7: Long-run value of the scaled uncertainty measure η∞ (blue dots) as a function of
the cost parameter θ̃, in the case of a linear memory cost function. Left panel: K = 1, ρ = 0.
Right panel: K = 10, ρ = 0.

than a critical value around 0.15, if one starts from ηt = η0 (a completely uninformative
memory), the choice of ηt+1 = η0 again represents a local minimum of the objective; hence
η = η0 is a stationary solution of the Euler equation for all of these values of θ̃, as shown
in the figure. However, for values of θ̃ only moderately larger than the critical value (such
as θ̃ = 0.20), this is not the only local minimum, and the global minimum is instead at an
interior choice for λt; this value results in a path {ηt} that converges to a different stationary
value for η∞, on the lower branch of the correspondence (as shown for example by the blue
dot for θ̃ = 0.20). Yet for values of θ̃ that exceed a second critical value just above 0.28, the
global minimum shifts from the interior minimum to the local minimum at ηt+1 = η0. For
all values beyond this point, the optimal memory structure involves λt = 0 for all t, so that
η∞ = η0 (as shown by the blue dots on the upper branch of the correspondence).

Thus while the locus of fixed points η∞(λ) is the same in Figures 1 and 5, all points on
this locus represent possible long-run memory structures (attainable through an appropriate
choice of λ̄) in the case of a fixed upper bound on mutual information, but not all of them
are always attainable in the case of a linear memory cost function. In the case K = 1, the
two sets of long-run solutions are identical; but in the case K = 10, there is a range of values
for η∞ that are associated with particular (relatively low) values of λ̄ but do not correspond
to any possible value of θ̃.33

33We can show analytically that the continuous relationship shown in the left panel of Figure 7 occurs for all
K ≤ 1 when ρ = 0, while the backward-bending correspondence and consequent discontinuous relationship
between θ̃ and η∞ occurs for all K > 1. See Appendix F.3 for further explanation.

26



3.3 Stationary fluctuations in the long run

Because our model implies that a DM does not learn the true value of µ with certainty even
in the long run, despite an arbitrarily long sequence of observations of the external state, over
which time the coefficients of the data-generating process (1.1) are assumed not to change,
it follows that the DM’s forecasts can be quite different from rational-expectations forecasts
— that is, the forecasts of an ideal statistician who knows the true coefficient values. From
the standpoint of an observer who is able to determine the true process, the forecasts of the
DM with limited memory will appear to be systematically biased. The biases in the DM’s
forecasts will furthermore fluctuate over time, in response both to variations in the external
state (to which the DM reacts differently than someone with rational expectations would)
and to noise in the evolution of the memory state.

We obtain a particularly simple characterization of the systematic pattern of forecast
biases if we consider the long run — the predictions of the equations in the previous two
sections in the case of very large values of t, so that ηt has converged to the constant value
η∞, λt has converged to λ∞, and so on. In this case, our model, like the model of “natural
expectations” of Fuster et al. (2010, 2011), predicts a stationary pattern of forecast biases
that do not reflect incomplete adjustment to a new environment.

In the long run, equations (1.1), (2.1), and (2.7) become a system of linear equations with
constant coefficients and Gaussian innovation terms, describing the evolution of the DM’s
cognitive state. This system of equations can be reduced to a VAR(1) system

s̃t+1 = fµ + F s̃t + ut+1, ut+1 ∼ N(0, Σu) (3.6)

where

s̃t ≡
[
m̃t

yt

]
, ut+1 ≡

[
ω̃t+1

εy,t+1

]
,

and f, F and Σu are a 2-vector and two 2× 2 matrices of constant coefficients respectively.
In this vector system, the first equation is obtained by substituting (2.1) into (2.15), while
the second equation is given by (1.1).

The matrix F furthermore has an upper-triangular form, while Σu is diagonal. We show
in the appendix that the eigenvalues of the matrix F are ρ and ρm, which quantities satisfy
0 ≤ ρ, ρm < 1.34 It follows that both yt and m̃t exhibit stationary fluctuations around well-
defined long-run average values which depend linearly on µ. The two independent exogenous
sources of variation in this system are the innovations εy,t+1 in the external state and the
memory noise innovations ω̃t+1.

The DM’s optimal estimate of µ at each point in time, µ̂t, as well as her optimal forecast
of the external state at any horizon τ > t,

ŷτ |t = E[yτ |m̃t, yt] = (1− ρτ−t)µ̂t + ρτ−tyt, (3.7)

will then be linear functions of the elements of s̃t, with coefficients that are also time-
invariant. We thus obtain a stationary multivariate Gaussian distribution for any number
of leads and lags of the external state, the DM’s memory state, and the DM’s estimates
and forecasts. This allows us to analyze not only the extent to which the DM’s forecasts

34See Appendix G.1 for details.
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4. Predicted Patterns of Forecast Bias

4.1 Stationary fluctuations in the long run

Figure 8: Impulse response of the DM’s estimate of µ
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Figure 9: Impulse response of the DM’s one-quarter-ahead forecast of the external state
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Figure 8: Impulse response of the DM’s estimate of µ to a unit positive innovation in the
observed value of yt at the time marked as “time = 0” on the horizontal axis, for alternative
values of the information bound λ̄, in the case that K = 1, ρ = 0.

should differ from rational-expectations forecasts, but the correlation that one should observe
between the bias in the DM’s forecasts and other observable variables.

In particular, the biases in the DM’s forecasts will be correlated with the evolution of the
external state. An unexpectedly high observed value for yt will be interpreted (because of
the DM’s uncertainty about µ) as implying a higher optimal estimate of µ, and this increase
in the DM’s estimate of µ will furthermore persist, decaying only gradually in subsequent
periods. This is illustrated in Figure 8, which shows the impulse response function for µ̂τ to a
unit positive innovation in the value of yt. The response is plotted for a variety of alternative
values for the information bound λ̄, in the case that K = 1 and ρ = 0 as in Figure 1.35

In the case that λ̄ = 1 (perfect memory), the value of µ is learned with perfect precision,
and as a consequence there is no effect (in the long run, depicted here) of fluctuations in
yt on the DM’s estimate of µ. (The Kalman gain γ1 has a long-run value of zero in this
case.) Instead, for values of λ̄ < 1, a higher observed value of yt leads the DM to increase
her estimate µ̂t (the Kalman gain is positive). The estimate µ̂τ remains higher (on average)
in subsequent periods as well. The memory state m̃t+1 carried into the period following the
innovation is a noisy record of µ̂t, and hence is higher because of the increase in yt; this
increases the average value of the estimate µ̂t+1, which increases the average value of the
memory state m̃t+2, and so on. The tighter the memory constraint (the lower the value of
λ̄), the greater the effect of the innovation in yt on µ̂t, because the DM is more uncertain
about the value of µ before observing yt; however, the effect on the DM’s estimate of µ is
also more transient the lower the value of λ̄, because less information is retained from one
period to the next about past cognitive states.

35See Appendix G.1 for illustration of how this figure would change under alternative assumptions about
the degree of persistence of the fluctuations in the external state.
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Figure 9: Impulse response of the DM’s one-quarter-ahead forecast of the external state
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Figure 9: Impulse response of the DM’s one-quarter-ahead forecast of the external state to
a unit positive innovation in the observed value of yt, again for alternative values of the
information bound λ̄, in the case that K = 1, ρ = 0.4.

These effects on the DM’s optimal estimate of µ then feed into her optimal forecast of the
external state at any future horizon τ , because of (3.7). As an illustration, Figure 9 shows
the impulse response of the one-quarter-ahead forecast ŷτ+1|τ to a unit positive innovation
in yt, using the same conventions as in Figure 8; in this figure, however, we assume that the
external state is serially correlated, with ρ = 0.4.36 When ρ > 0, the rational-expectations
forecast (corresponding to λ̄ = 1 in the figure) is itself increased by a positive innovation
in yt (by an amount equal to fraction ρ of the innovation), and the increase in the forecast
is furthermore persistent (decaying back to its original level at a rate proportional to ρτ−t).
But when λ̄ < 1, the forecast is increased by even more, owing to the fact that the higher
observation of yt increases the DM’s estimate of µ as well. This additional effect on the
forecast is initially larger the smaller is λ̄; but a smaller λ̄ (tighter memory constraint) also
causes the additional effect to die out more rapidly, since its propagation can only be through
the DM’s memory of her previous judgment about the value of µ.

Thus our model predicts that forecasts of the future value of a variable will over-react to
news about the current value of that variable (assuming, as is often the case with economic
time series, that the variable in question exhibits positive serial correlation). Positive serial
correlation means that a higher current observation should increase somewhat one’s forecast
of the variable’s future value, even under rational expectations; but imperfect memory results
in a larger increase in the forecast than is consistent with rational expectations. The model
also predicts that biases of this kind will persist for some time. Once a situation occurs
that leads the DM to over-estimate the future level of some time series, the DM will as

36In the case that ρ = 0, the impulse response of ŷτ+1|τ will be identical to the impulse response of µ̂τ ,
already shown in Figure 8. The corresponding impulse responses for additional values of ρ are shown in
Appendix G.1.
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a consequence continue (on average) to over-estimate the future level of that variable for
several more quarters.

3.4 “Recency bias” in expectation formation

One type of systematic difference between observed expectations and those of a perfect
Bayesian decision maker that has often been reported is “recency bias” (e.g., Malmendier et
al., 2017) — a tendency for expectations to be influenced more by more recent observations,
even when in principle, observations of a given time series at earlier dates should be equally
relevant as a basis for inference. Our model predicts that such a bias should exist, as a
consequence of optimal adaptation to limited memory precision (or to the cost of maintaining
a more precise memory). Observations of the external state farther in the past are recalled
with more noise, and as a consequence are given less weight in estimating parameters of the
data generating process than would be optimal in the case of a perfect memory of past data.

The system (3.6) implies that, in the case that data have been generated in accordance
with this law of motion for a sufficiently long time, we can express the value of the memory
state m̃t+1 as a function of the sequence of external states {yτ} for τ ≤ t and the sequence
of memory noise realizations {ω̃τ+1} for τ ≤ t:

m̃t+1 = F12 ·
∞∑
j=0

(ρm)jyt−j + ω̃sumt+1 , (3.8)

where
F12 ≡ λ (γ1v1 + v2)

is the (1, 2) element of the matrix F in (3.6), and

ω̃sumt+1 ≡
∞∑
j=0

(ρm)jω̃t+1−j (3.9)

is a serially correlated Gaussian noise term. Thus one way of describing the optimal memory
structure in the long run (that is, once ηt has converged to η∞) is to say that m̃t+1 should be a
noisy record of an exponentially-weighted moving average of past observations of the external
state, where the added noise term is a serially correlated Gaussian random variable that
evolves independently of the external state. The moving average puts a weight proportional
to (ρm)j on observation yt−j; thus progressively smaller weights are placed on observations
as they recede farther into the past.

Equation (2.1) implies that a DM’s estimate of the unknown mean µ of the external state
is given by a linear relation of the form

µ̂t = ξm̃t + γ1yt, (3.10)

where the coefficient ξ > 0 is defined in the appendix. Using (3.8) to substitute for the
memory state in this expression, we see that we can write the estimate in the form

µ̂t

∞∑
j=0

αjyt−j + ξω̃sumt , (3.11)
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where the weights {αj} are all positive, and the weights for j ≥ 1 decrease exponentially:
αj = ξ(ρm)j.

The forecasts specified by (3.7) using this value for µ̂t are similar to those implied by a
model of least-squares learning (Evans and Honkapohja, 2001) in which the DM is assumed
to know that the variable’s law of motion is of the form (1.1); the value of the coefficient ρ is
assumed to be known while µ must be estimated; and the unknown coefficient is estimated
using a “constant-gain” estimator. (The differences between (3.11) and a standard constant-
gain estimate of the mean of a series are the fact that the coefficient α0 is differently specified,
and the presence of the Gaussian error term.) The biases in forecasts predicted by our model
will therefore have important similarities to those of a model of constant-gain learning, of the
kind included in estimated macroeconomic models by authors such as Milani (2007, 2014)
and Slobodyan and Wouters (2012).

We provide, however, a justification for the declining weight on observations farther
in the past, as a consequence of optimal forecasting based on an imperfect memory, and
furthermore endogenize the nature of that memory.37 Notably, our justification applies even
in the case of an external state process with parameters that do not drift over time (as indeed
we assume in the analysis here). Nor does it depend on the replacement over time of an
earlier population by new individuals with different experiences, as suggested by Malmendier
and Nagel (2016); our model justifies declining weights on earlier observations at the level of
an individual forecaster. Our model also implies that the value of the “gain parameter” ρm
should depend on the degree of persistence of the series being forecasted, rather than being
a structural feature of the estimation method used by the forecaster.

4 Predictable Forecast Errors

An important consequence of optimal Bayesian inference with perfect memory (as assumed
under the hypothesis of rational expectations) is that the error in a forecast should not itself
be forecastable on the basis of any information available to the forecaster, at or before the
time of the forecast in question. Thus if we let ŷt+h|t denote a DM’s forecast at time t of
the value of the external state at time t+ h, the forecast error38 FEt ≡ yt+h − ŷt+h|t should
be uncorrelated with any variable zt the value of which is known to the DM at time t (or
earlier), either because it has been publicly observable or because it is part of the DM’s own
cognitive state. Many econometric investigations of the consistency of observed forecasts with
the hypothesis of rational expectations have accordingly been based on regressions of FEt on
other variables that ought to be known to the forecaster, testing the null hypothesis that all
such regression coefficients should equal zero. Here we discuss the extent to which our model
can account for some widely discussed examples of evidence against this null hypothesis;
we particularly discuss evidence indicating over-reaction of subjective expectations to news
about the series that is to be forecasted.

37The fact that our model predicts decreasing weights on observations made farther in the past is a notable
difference between our model and the one proposed by Afrouzi et al. (2020).

38Note that we give this variable a time subscript t to indicate that it is the error in the forecast made at
time t; the value of the random variable FEt is not revealed however until date t+ h.
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4.1 Evidence of over-reaction: the response of forecasts to
fluctuations in the state

As noted in the introduction, Landier et al. (2020) conduct a laboratory experiment in which
forecasts of a stationary AR(1) process are elicited from subjects. They find that subject’s
expectations over-react to innovations in this process, as predicted by our model (along with
others that they discuss). They give particular emphasis to a measure of over-reaction in
which a subject’s forecast ŷt+h|t (where h is the number of realizations in advance for which
the forecast is solicited in trial t) is regressed on the realization of the variable just before
the forecast is solicited:

ŷt+h|t = αsubjh + ρsubjh yt + vt. (4.1)

A separate regression (with coefficients αh, ρ
subj
h ) can be estimated for each of several hori-

zons h. Landier et al. are interested in the difference between the “subjective degree of
persistence” measured by the estimated coefficient ρsubjh and the corresponding coefficient ρh
in a regression using actual outcomes:

yt+h = αh + ρhyt + ut+h. (4.2)

The authors measure the degree of over-reaction of expectations to news by the extent to
which ρsubjh is larger than ρh.39 Note that this is an example of a test of the predictability of

forecast errors, since the coefficient of a regression of FEt on yt will equal ρh − ρsubjh .
We can investigate what our model of expectation formation on the basis of an imperfect

memory implies about the relationship between ρsubjh and ρh in the case of a stationary AR(1)
process. Here we consider the predicted values of the regression coefficients in the long run,
as the length of the time series used to estimate them goes to infinity. The law of motion
(1.1) implies that for any horizon h ≥ 1, the joint distribution of yt and yt+h (conditional on
the value of µ) will be bivariate Gaussian, with

E[yt+h |µ, yt] = (1− ρh)µ + ρhyt.

Hence with a sufficiently long series of observations, the coefficients in a regression of the
form (4.2) should approach the asymptotic values

αh = (1− ρh)µ, ρh = ρh.

(Here we assume that the regression uses an arbitrarily long sequence of realizations of a
process for which there is a single, unchanging value of µ.)

Equation (3.7) implies that subjective forecasts should be given by

ŷt+h|t = (1− ρh)µ̂t + ρhyt,

so that the predicted coefficient ρsubjh in regression (4.1) will equal

ρsubjh = (1− ρh)βµ̂|y + ρh = (1− ρh)βµ̂|y + ρh, (4.3)

39The authors also discuss other measures of over-reaction, most notably the predictability of forecast errors
by previous forecast revisions, as discussed in the next subsection, but argue that the difference between
ρsubjh and ρh is likely to be more robustly estimated, especially in the case of processes with relatively low
persistence (where they argue that over-reaction is greatest).
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where βµ̂|y is the coefficient in a regression of µ̂t on yt,

βµ̂|y =
cov[µ̂t, yt |µ]

var[yt |µ]
=

cov[µ̂t, yt |µ]

σ2
y

.

We show in the appendix how to calculate this coefficient as a function of the model param-
eters.40

Importantly, our numerical solutions indicate that µ̂t and yt are always positively corre-
lated (conditional on µ). This is because a positive innovation in the external state yt raises
(or at least never lowers) the expected value of yτ for all τ ≥ t, and at the same time also
raises the expected value of µ̂τ for all τ ≥ t (as illustrated in Figure 8 and similar figures in
the appendix). Since the memory noise has no effect on the evolution of the external state,
there are no shocks that move µ̂t and yt in opposite directions, while some (at least the
innovation εyt) move both of them in the same direction. But given that βµ̂|y > 0, equation

(4.3) implies that ρsubjh > ρh; that is, our model implies over-reaction of the kind exhibited
by the forecasts of the subjects of Landier et al.

Equation (4.3) also implies that for fixed values of the model parameters other than ρ,
the over-reaction measure ρsubjh −ρh converges to zero as ρ→ 1, for any forecast horizon h.41

This is also approximately true of the regression coefficients reported by Landier et al. (see
in particular their Figure 3). Indeed, these authors stress the finding that in their data, the
discrepancy ρsubjh − ρh is much larger when ρh is relatively small (either because ρ is small,
or because ρ is well below one and h is large). This is also true in numerical solutions of our
model as indicated in Figure 10.

One of the more striking features of the regressions reported by Landier et al. is that
they find that ρsubjh is well approximated by an increasing function of ρh, with the same
function applying regardless of whether the variation in ρh occurs as a result of variation in
ρ or variation in h.42 The relationship ρsubj(ρ) is furthermore an upward-sloping one, with a
slope much less than one, starting well above the diagonal for low values of ρ and approaching
the diagonal as ρ→ 1. (See the plot of their regression coefficients in Figure 10.) While our
model does not imply that a functional relationship of that kind should hold precisely, it is
worth noting that to the extent that the value of βµ̂|y remains approximately the same as

one varies ρ, (4.3) implies that the value of ρsubjh should be nearly the same for all pairs (ρ, h)
that imply the same value of ρh; and if the constant value of βµ̂|y is approximately 0.5, the

implied relationship between ρsubjh and ρh will be approximately the one suggested by the
data of Landier et al.

There exist parameterizations of our model where this is approximately what our equa-
tions predict. Figure 10 plots the predicted value of ρsubjh against the value of ρh, for each of
several different horizons h, each represented by a distinct curve; the curves are shown for
the case in which K = 1 and λ̄ = 0.3. Along each curve, the variation in ρh is due purely to
variation in ρ. (The fact that λ̄ is fixed despite variation in ρ means that we assume a fixed

40See Appendix G.3 for details.
41This prediction depends on βµ̂|y remaining bounded as ρ approaches 1. This is the case in our numerical

solutions, both when λ̄ is held constant as ρ is varied (as in Figure 2) and when θ̃ is held constant as ρ is
varied (as in Figure 6).

42See Figure 3 of their paper for a graph with the same format as Figure 10 here.
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Figure 10: Comparison of the values for the regression coefficients ρh and ρsubjh for different
values of ρ and h. (The figure is shown for the case K = 1, λ̄ = 0.3.) The diagonal line
indicates the prediction of the rational-expectations hypothesis.

upper bound on the mutual information, as in section 3.1, rather than a convex cost func-
tion.) The horizons used are h = 1, 2 and 5, as these are the horizons for which Landier et al.
elicit forecasts from their subjects; the regression coefficients that they estimate for various
combinations of ρ and h are indicated by the circles in the figure (with colors indicating the
horizon h).

The three curves are not exactly the same, since in our model βµ̂|y is a function of ρ (but
the same for all values of h), rather than being a function only of ρh. Nonetheless, for the
parameterization chosen here, βµ̂|y is nearly constant as ρ is varied; as a consequence, the

relationship between ρh and ρsubjh predicted by (4.3) is close to a linear one, and is nearly the
same for all values of h. Our model therefore provides quite a good account of the effects
of variation in either ρ or h on the value of ρsubjh , as indicated by the fact that none of the
circles in Figure 10 are far from the corresponding curve.

4.2 Evidence of over-reaction: forecast revisions and forecast
error

A comparison of the coefficient ρsubjh with ρh provides a fairly straightforward test of over-
reaction of forecasts to news about the variable being forecasted; but the null hypothesis
that ρsubjh should equal ρh only follows from rational expectations in the case that one is sure
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that forecasters at time t have observed the external state yt, and calculation of the predicted
value ρh requires knowledge of the true data-generating process. Both of these assumptions
make sense in the case of the laboratory experiment of Landier et al. (2020); but they are
more debatable in the case of forecasts of economic time series outside laboratory settings.

Bordalo et al. (2020) use a different approach to document systematic departures from
rational expectations in surveys of professional forecasters. Following a proposal by Coibion
and Gorodnichenko (2015), they regress the error (that eventually becomes known) in a
given forecaster’s forecast of a future data release on the revision that the forecast represents,
relative to the same forecaster’s forecast of the same future variable at an earlier time. That
is, they test whether the coefficient b is different from zero in a regression specification of
the form

FEt = a + b · FRt + ut, (4.4)

where FEt is the error (as defined above) in the forecast at time t for some horizon h > 0,
and

FRt ≡ ŷt+h|t − ŷt+h|t−1

is the revision of this forecast between time t− 1 and time t.
If the forecast ŷt+h|t represents the correctly calculated expectation of yt+h conditional

on the forecaster’s information set at time t, then the forecast error FEt should not be
forecastable on the basis of any information available to the forecaster at time t, as dis-
cussed above. Bordalo et al. point out that even if one is agnostic about which external
developments are observed by forecasters (or how accurately they observe them), as long as
one supposes that the forecaster’s own past cognitive states are known with complete preci-
sion, then the size of the forecast revision FRt should be part of the information set; hence
the coefficient b in (4.4) should equal zero under a hypothesis of correct Bayesian inference
from the forecaster’s information set. A coefficient b 6= 0 allows one to reject not just the
full-information rational-expectations hypothesis, but also models that assume that people’s
choices are optimal Bayesian responses conditional upon a noisy cognitive state (but with
perfect memory), such as the models of Sims (2003) or Woodford (2003).43

Bordalo et al. (2020) find instead that b is significantly negative in the case of many
macroeconomic and financial time series. (Landier et al., 2020, find that the same is true of
the forecasts elicited in their experiment.44) Bordalo et al. interpret this negative sign as
evidence of over-reaction of forecasts to economic news arriving between the dates of the two

43Coibion and Gorodnichenko (2015) propose a regression specification of the form (4.4), but where the
forecast ŷt+h|t used to define both FEt and FRt is a consensus forecast (that is, the average of many
forecasters’ forecasts) rather than an individual forecast. In this case, a coefficient b 6= 0 allows one to reject
the hypothesis of full-information rational-expectations forecasts on the part of all forecasters (since in that
case, the forecasters should have a common information set, which should include all information reflected
in the consensus forecast), but could still be consistent with Bayesian rationality under the hypothesis that
different forecasters have different information sets, as Coibion and Gorodnichenko discuss.

44Indeed, the evidence for b < 0 as a general regularity is even stronger in the laboratory data of Landier
et al. than in the field data of Bordalo et al. Landier et al. find that b < 0 for all of the different time series
(with widely varying degrees of persistence) used in their experiment, whereas this is less consistently true
for professional forecasts studied by Bordalo et al.; and Landier et al. find that b < 0 both when individual
forecasters’ errors are regressed on their own forecast revisions, and when consensus forecasts (of a group of
experimental subjects who have been shown the same time series) are regressed on revisions of the consensus
forecast, whereas Bordalo et al. often do not find a negative sign when consensus forecasts are used.
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successive forecasts: news that implies that one’s previous forecast was too low results in an
upward revision that is too large, so that the occurrence of an upward revision is correlated
with the second forecast turning out to be too high.

As discussed above, our model implies that there will be over-reaction to new realizations
of the external state, and indeed our model predicts that one can easily have a negative
coefficient b in a regression of the form (4.4). The theoretically predicted asymptotic value
for the coefficient b in the case of a long enough series of observations from an environment
with unchanging statistics (including a fixed value of µ) is given by

b =
cov[FEt, FRt |µ]

var[FRt |µ]
,

where the forecast error and forecast revision variables are defined above. Since the de-
nominator is necessarily positive (in any case in which the forecast is not constant at all
times), the coefficient b should be negative if and only the covariance between FEt and FRt

is negative.
That this can easily be the case can be illustrated by considering the simple case of an

i.i.d. process (ρ = 0) for the external state. In this case, (3.7) implies that ŷt+h|t = µ̂t, for
any forecast horizon h ≥ 1. In this case we have

var[FRt |µ] = var[µ̂t − µ̂t−1 |µ] = 2(1− ρµ̂)var[µ̂t |µ],

where ρµ̂ is the coefficient of serial correlation of the stationary fluctuations in µ̂t, and

cov[FEt, FRt |µ] = cov[yt+h − µ̂t, µ̂t − µ̂t−1 |µ]

= cov[−µ̂t, µ̂t − µ̂t−1 |µ] = −(1− ρµ̂)var[µ̂t |µ].

(Here the first expression on the second line follows from the fact that yt+h is completely
uncorrelated with any variables observable at time t or earlier, conditional on the value of µ,
when ρ = 0.) Hence in this case we obtain the prediction b = −1/2, simply as a consequence
of the fact that our model implies stationary fluctuations in µ̂t around some long-run average
estimate, for any parameter values with λ∞ < 1.

Our numerical solutions indicate that b is often negative in the case of positive serial
correlation in the external state as well, as illustrated in Figure 11.45 The figure shows the
predicted value of the coefficient b as the coefficient of serial correlation ρ varies between 0
and 1, in the case that the second forecast is a one-period-ahead forecast (h = 1, the case for
which Landier et al. provide estimates of this coefficient based on their experimental data).
The figure is computed under the assumption that K = 1 and λ̄ = 0.3, as in Figure 10. We
see that the predicted degree of over-reaction (as measured by the degree to which b < 0) is
greatest when ρ = 0; the coefficient equals −0.5 when ρ = 0 (as explained in the previous
paragraph), but is less negative when ρ > 0, and near zero for large values of ρ. This is also
what Landier et al. find to be true of the forecasts elicited in their laboratory experiment
(see their Figure 2A).

45Formulas that can be used to calculate b as a function of the model parameters are given in Appendix
G.2.
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4.2 Evidence of over-reaction: the response of forecasts to fluctuations in the state

Figure 10: Subjective persistence
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Figure 11: CG regression

0.0 0.2 0.4 0.6 0.8 1.00.5

0.4

0.3

0.2

0.1

0.0

b

7

Figure 11: Predicted value of the coefficient b from a regression of forecast errors on the
size of the revision of the forecast, in the case external state processes of different degrees of
serial correlation ρ. Model predictions are shown under the assumption that K = 1, λ̄ = 0.3.

A similar regularity is observed in the case of professional forecasts of the economic time
series considered by Bordalo et al. (2020). The estimates that they obtain for b mainly fall
in or near the interval [−0.5, 0]. Moreover, in the case of the highly persistent series that
they consider, the value of b is around zero on average (sometimes slightly negative, but
sometimes slightly positive); in the case of the series that they consider with a coefficient of
serial correlation less than 0.1, the value of b is nearly as negative as -0.5; and for the series
that they consider with intermediate degrees of serial correlation, b is negative but much
less negative than -0.5. (See Figure 1 of Landier et al., who stress this feature of the results
of Bordalo et al.) Our model is not only able to explain why negative values of b are often
obtained, but also why these are almost always between small positive values and -0.5, and
why the coefficient is more negative for the least persistent time series.

4.3 Idiosyncratic noise in individual forecasts

Another kind of evidence of systematic bias in the forecasts announced by individual fore-
casters is provided by Fuhrer (2018). Fuhrer shows that subsequent revisions of the forecasts
of an individual forecaster are partially forecastable on the basis of information available (at
least to the community of forecasters in general) at the time of the original forecast, a result
inconsistent with the hypothesis of full-information rational expectations (under which not
only should all forecasters be ideal Bayesian statisticians, but all should share a common
information set).

Suppose now that we let ŷit+h|t be the forecast of yt+h at time t by forecaster i, while
ŷconst+h|t is the “consensus forecast,” the median of the forecasts at time t made by the different
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forecasters in a given survey. Fuhrer reports regressions of the form

ŷit+h|t − ŷit+h|t−1 = a + γ · (ŷit+h|t−1 − ŷconst+h|t−1) + e′Zi
t + ut, (4.5)

where Zi
t is a vector of other forecaster-specific control variables (that vary across specifi-

cations). His main finding, obtained for forecasts of several different aggregate variables,
and robust both to different choices for the horizon h and the control variables included, is
that the coefficient γ is found to be significantly negative (for example, between -0.5 and
-0.6 in the case of revisions of inflation forecasts by members of the Survey of Professional
Forecasters, where the forecasts are collected at a quarterly frequency). This indicates a
tendency of forecasters to subsequently revise their forecasts so as to partially eliminate the
previous gap between their forecast and the consensus forecast.

Many models of biased expectation formation proposed in the previous literature predict
systematic departures from rational expectations, and hence allow forecast revisions to be
predictable by information that was publicly available at the earlier date; but they nonethe-
less do not predict that the variable considered by Fuhrer should predict subsequent forecast
revisions, insofar as they do not explain why the forecasts of different forecasters should
respond in different ways to the same publicly available information. Our model instead
requires that there should be idiosyncratic noise in individual forecasts; for it is only because
of the noise term in the law of motion for the memory state (2.15) that the DM is unable to
learn the value of µ with perfect precision, and there is no reason for the noise term ωit+1 to
be correlated across decision makers.46

It is clear that not only the forecasts of different households, but even the forecasts of
professional forecasters exhibit substantial dispersion at a given point in time. A defender
of the hypothesis of Bayesian rationality might argue that this simply reflects the fact that
different forecasters have access to different private sources of information. Yet experiments
in which forecasts are elicited from different subjects who are shown identical sequences of
observations indicate that dispersion of forecasts exists even the experimenter can be certain
that each subject was exposed to precisely the same information; see in particular Khaw
et al. (2017) and Landier et al. (2020). This indicates noisy cognitive processing of the
information presented to the subjects; our model provides at least one possible example of
the nature of such idiosyncratic noise in the process by which individuals’ expectations are
formed.

Our model not only explains why there should exist non-trivial dispersion in the dis-
crepancy between individual forecasts and the consensus forecast, but why this discrepancy
should predict subsequent forecast revisions in the way that it does. In our model, all fore-
casters observe the same external states, but their memories of past states are subject to
idiosyncratic noise. In the case of a large enough sample of forecasters, the mean realizations
of the memory noise term ω̃it+1 across forecasters i should be close to zero each period, so

46The existence of correlation would imply that the memory state m̃i
t+1 conveys information about the

DM’s environment in addition to the information conveyed about the DM’s own prior cognitive state; there
would need to be some way in which m̃i

t+1 is also able to convey information about the cognitive states of
other DMs. But even if that were possible, it would be contrary to the spirit of our imposition of a limit on
the informativeness of the memory state not to count the information conveyed about these other cognitive
states as increasing the information cost of such a memory state.
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that (3.8) implies that the mean memory state should be essentially a deterministic function
of the past external states,

m̃avg
t+1 = F12 ·

∞∑
j=0

(ρm)jyt−j.

If we let m̃diff,i
t+1 ≡ m̃i

t+1− m̃avg
t+1 be the difference between the memory state of DM i and the

average memory state, (3.8) implies that

m̃diff,i
t+1 = ω̃sum,it+1 .

If we similarly let µ̂diff,it be the difference between DM i’s estimate of µ and the average
estimate, it follows from (3.10) that this difference must entirely be due to the difference
between i’s memory state and the average memory state, so that we can write

µ̂diff,it = ξm̃diff,i
t .

Finally, it follows from (3.7) that for any forecast horizon h, the difference between i’s forecast
and the average forecast will be due to entirely to the difference in i’s estimate of µ, so that

ŷit+h|t − ŷavgt+1|t = (1− ρh)µ̂diff,it = (1− ρh)ξω̃sum,it .

In the large-sample limit, the population distribution of realizations of the variable ω̃sum,it+1

across forecasters i should be essentially be identical to the distribution of the random
variable ω̃sumt+1 . It follows that the distribution of individual forecasts {ŷit+h|t} should be

approximately a Gaussian distribution, with a median very close to its mean, ŷavgt+h|t. Thus

the consensus forecast should be essentially the same as ŷavgt+h|t, and we obtain the prediction

∆i
t ≡ ŷit+h|t − ŷconst+1|t = (1− ρh)ξω̃sum,it . (4.6)

In a regression of the form (4.5), but where, for purposes of our theoretical derivation,
we assume there are no control variables Zi

t included, the asymptotic value of the coefficient
γ (with a long enough sample) should equal

γ =
cov[FRi

t, ∆i
t−1]

var[∆i
t−1]

.

The denominator of this expression is equal to

var[∆i
t−1] = (1− ρh)2ξ2 · var[ω̃sum,it−1 ]. (4.7)

The numerator is instead equal to

cov[FRi
t, ∆i

t−1] = cov[(1− ρh)(µ̂it − µ̂it−1, ∆i
t−1]

= cov[(1− ρh)ξ(m̃i
t − m̃i

t−1, ∆i
t−1]

= (1− ρh)2ξ2 · cov[ω̃sum,it − ω̃sum,it−1 , ω̃sum,it−1 ]

= −(1− ρm) · (1− ρh)2ξ2 · var[ω̃sum,it−1 ].
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Here the first line uses (3.7) and the fact that (4.6) implies that ∆i
t−1 will be distributed

independently of all leads and lags of the external state; the second line uses (2.1) and again
the fact that ∆i

t−1 must be distributed independently of the external state; the third line
uses (3.8) as well as (4.6); and the final line uses (3.9) to show that the coefficient of serial
correlation of the process {ω̃sum,it } is equal to ρm. Combining this result with (4.7), we obtain
the prediction

γ = −(1− ρm).

Since 0 < ρm < 1, as illustrated in Figure 2, our model predicts that the regression
coefficient γ should have a negative sign, as found by Fuhrer (2018). Our model also predicts
that the size of γ should depend on the degree of persistence of the variable being forecasted,
but be independent of the length of the forecast horizon h. If we use parameter values
K = 1, λ̄ = 0.3, as in Figures 10 and 11, then (using the value for ρm shown in Figure
2) in the case of a relatively persistent time series, the model predicts that the value of γ
should be approximately -0.7. Thus the predictable forecast revision over the next quarter
should be somewhat more than half of the discrepancy between i’s forecast and the consensus
forecast; this is what Fuhrer finds, for the most of the variables and alternative regression
specifications that he considers.

[ADD CONCLUSION]
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APPENDIX

A Reduction of the General Forecasting Problem to

Estimation of µ

Consider the problem of choosing the vector of forecasts zt each period so as to minimize
(1.2). The elements of zt must be chosen as a function of the DM’s cognitive state at time
t (after observing the external state yt). As explained in the text, the DM’s cognitive state
at time t is assumed to consist of the value of the current external state yt (observed with
perfect precision), along with whatever additional information is reflected in the DM’s period
t memory state mt. (In this section, it is not yet necessary to specify the nature of the vector
mt.)

If we use the notation Et[·] for the expectation of a random variable conditional on a
complete description of the state at date t (including knowledge of the true value of µ), then

E[(zt − Etz̃t)
′W (z̃t − Etz̃t)] = 0,

since z̃t − Etz̃t is a function of innovations in the external state subsequent to date t, that
must be distributed independently of all of the determinants of both zt and Etz̃t. It follows
that the term in (1.2) involving zt can be equivalently expressed as47

E[(zt − z̃t)′W (zt − z̃t)] = E[(zt − Etz̃t)
′W (zt − Etz̃t)]

+E[(z̃t − Etz̃t)
′W (z̃t − Etz̃t)]

≡ L1t + L2t.

Moreover, L2t is independent of the decisions of the DM, and thus irrelevant to a determina-
tion of the optimal decision rule. The loss function (1.2) can thus equivalently be written as
the discounted sum of the L1t terms, which involve squared differences between zt and Etz̃t.

It further follows from the law of motion (1.1) that

Etz̃t =
∞∑
j=0

Aj[µ+ ρj(yt − µ)].

Since the precise value of yt is presumed to be part of the cognitive state on the basis of
which zt can be chosen, one can write any decision rule in the form

zt = ẑt + (
∞∑
j=0

ρjAj) · yt,

where ẑt must be some function of the cognitive state at date t. In terms of this notation,
the relevant part of the loss function (1.2) can then be written as

L1t = E[(ẑt − µa)′W (ẑt − µa)],

47Here we omit the factor βt that multiplies this term in (1.2).
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where we define a ≡∑∞j=0(1− ρj)Aj and make use of the fact that Et[µ] = µ.
The term L1t that we wish to minimize can further be expressed as the expected value

(integrating over all possible realizations of the cognitive state st in period t) of the quantity

L̃1(st) ≡ E[(ẑt − µa)′W (ẑt − µa) |st]
= E[ẑt |st]′WE[ẑt |st] + E[z̆′tWz̆t |st]
− 2a′WE[ẑt |st] · E[µ|st] + a′Wa · E[µ2|st],

where we define z̆t ≡ ẑt−E[ẑt |st]. (In expanding the right-hand side in this way, we use the
fact that E[z̆t |st] = 0, and that z̆t must be independent of the deviation of µ from E[µ|st],
since the DM has no way to condition her action on µ except through the information about
µ revealed by the cognitive state.) The expression L̃1(st) can then be separately minimized
for each possible cognitive state st, by choosing a distribution for ẑt conditional on that state.
We further note that the random component z̆t of the action affects only the second term
on the right-hand side, and so should be chosen to minimize that term; since W is positive
definite, this is achieved by setting z̆t = 0 with certainty, so that ẑt must be a deterministic
function of st.

We can then simply write E[ẑt |st] as ẑt, and observe that

L̃1(st) = (ẑt − aE[µ|st])′W (ẑt − aE[µ|st]) + a′Wa · var[µ|st], (A.1)

where the final term on the right-hand side is independent of the choice of ẑt. Thus in each
cognitive state st, ẑt must be chosen to minimize the first term on the right-hand side; since
W is positive definite, this is achieved by setting ẑt = a · µ̂t, where µ̂t = E[µ|st].

Thus there is no loss of generality in restricting the DM to response rules of the form
ẑt = a · µ̂t, where µ̂t is a scalar choice that depends on the cognitive state in period t, and
that can be interpreted as the DM’s estimate of µ given the cognitive state. Substituting
this expression for ẑt into (A.1), we have

L̃1(st) = a′Wa ·
{

(µ̂t − E[µ|st])2 + var[µ(st)]
}

= a′Wa · E[(µ̂t − µ)2 |st].

Then taking the unconditional expectation of this expression, we obtain

L1t = α ·MSEt,

where α ≡ a′Wa > 0 and MSEt is defined as in the text.
Under any forecasting rule of the kind assumed here, then, the value of the loss function

(1.2) will equal (1.4), plus an additional term

∞∑
t=0

βtL2t

that is independent of the DM’s forecasting rule. Hence within this class of forecasting rules,
the rule that minimizes (1.2) must be the one that minimizes (1.4); and since any other kind
of forecasting rule can only lead to a higher value of (1.2), we can replace the problem of
choosing a rule for determining zt that minimizes (1.2) by the problem of choosing a rule for
determining µ̂t that minimizes (1.4).
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B Bayesian Updating After the External State is

Observed: A Kalman Filter

Let the elements of the memory state be partitioned as

mt =

[
mt

m̄t

]
, (B.1)

where the lower block consists of the elements of the reduced memory state

m̄t ≡ E[xt |mt], where xt ≡
[

µ
yt−1

]
,

while the upper block consists of the conditional expectations E[yt−j |mt] for 2 ≤ j ≤ t. (This
simply requires an appropriate ordering of the elements of mt, using the notation for this
vector introduced in the main text.)

We assume a posterior distribution of the form

xt |mt ∼ N(m̄t, Σt)

conditional on the memory state mt, where m̄t is a 2-vector and Σt is a 2 × 2 symmetric,
p.s.d. matrix. Under our assumption of linear-Gaussian dynamics for the memory state, the
vector m̄t will also be drawn from a multivariate Gaussian distribution. Since the prior for
the hidden state vector is specified to be

xt ∼ N(0, Σ0), Σ0 ≡
[

Ω Ω
Ω Ω + σ2

y

]
, (B.2)

it follows that the unconditional distribution for the reduced memory state m̄t must be of
the form

m̄t ∼ N(0, Σ0 − Σt).

The complete set of variables (xt,mt) also have a multivariate Gaussian distribution.
Moreover, since (by assumption) the expectation of xt conditional on the realization of mt

depends only on the elements of m̄t, it follows that the entire distribution of xt conditional
on mt depends only on m̄t, so that

xt|mt = xt|m̄t.

Hence the joint distribution of the variables (xt,mt) can be factored as

p(xt,mt, m̄t) = p(xt, m̄t) · p(mt |m̄t).

The DM then observes the external state yt, which is assumed to depend on the hidden
state vector xt through an “observation equation” of the form

yt = c′xt + εyt, εyt ∼ N(0, σ2
ε )
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as a consequence of (1.1), where we further assume that εyt is distributed independently of
both mt and xt. It follows that the variables (xt,mt, yt) will have a joint distribution that is
multivariate Gaussian; and that this distribution can be factored as

p(xt,mt, yt) = p(xt,mt) · p(yt |xt)
= p(mt |m̄t) · p(xt, m̄t) · p(yt |xt)
= p(mt |m̄t) · p(xt, m̄t, yt).

From this it follows that
xt |mt, yt = xt |m̄t, yt.

Thus both the expectation of xt conditional on the cognitive state st ≡ (mt, yt), and the
variance-covariance matrix of the errors in the estimation of xt based on the cognitive state,
will depend only on the joint distribution of the variables (xt, m̄t, yt). Moreover, the distri-
bution for xt conditional on the realizations of the elements of the cognitive state will be
multivariate Gaussian,

xt |m̄t, yt ∼ N(µ̄t, Σ̄t), (B.3)

where µ̄t is a linear function of m̄t and yt, while Σ̄t is independent of the realizations of either
m̄t or yt.

We can further decompose the vector of means µ̄t as

µ̄t = E[xt |m̄t, yt]

= E[xt |m̄t] + {E[xt|m̄t, yt]− E[xt|m̄t]}
= m̄t + γt · (yt − E[yt |m̄t])

= m̄t + γt · (yt − c′E[xt |m̄t])

= m̄t + γt · (yt − c′m̄t),

where γt is the vector of Kalman gains. (The first element of this vector equation is then
just equation (2.1) in the main text.)

The vector of Kalman gains must be chosen so that the estimation errors xt − µ̄t are
orthogonal to the surprise in the observation of the external state, yt − c′m̄t. This requires
that

0 = cov(xt − µ̄t, yt − c′m̄t)

= cov((xt − m̄t)− γt(yt − c′m̄t), yt − c′m̄t)

= var[xt − m̄t]c − var[c′(xt − m̄t) + εyt] · γt
= Σtc − [c′Σtc+ σ2

ε ] · γt.

Hence

γt =
Σtc

c′Σtc+ σ2
ε

. (B.4)

The gain coefficient γ1t in equation (2.1) is just the first element of this vector, γ1t ≡ e′1γt.
This together with (B.4) yields the formula (2.3) given in the main text.
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The variance-covariance matrix in the conditional distribution (B.3) will be given by

Σ̄t = var[xt − µ̄t] = var[(xt − m̄t)− γt(yt − c′m̄t)]

= var[(I − γtc′)(xt − m̄t) − γtεyt]

= (I − γtc′)Σt(I − γtc′)′ + σ2
εγtγ

′
t

= Σt − 2[c′Σtc+ σ2
ε ]γtγ

′
t + [c′Σtc]γtγ

′
t + σ2

εγtγ
′
t

= Σt − [c′Σtc+ σ2
ε ]γtγ

′
t.

The remaining uncertainty about the value of µ given the cognitive state, σ̂2
t , is then equal

to Σ̄11,t, so that
σ̂2
t = e′1Σ̄te1 = e′1Σte1 − (c′Σtc+ σ2

ε )(γ1t)
2,

which is just expression (2.2) in the main text.
Substituting expression (B.2) for Σ0 into this solution, we obtain

σ̂2
0 = Ω −

(
Ω + σ2

y

)
·
[

Ω

Ω + σ2
y

]2

=
Ωσ2

y

Ω + σ2
y

,

which is the formula given in (2.4). It remains to be shown that this is an upper bound for
σ̂2
t . To show this, we observe that

σ̂2
t = min

β,γ1
var[µ− β′m̄t − γ1yt]

≤ min
γ1

var[µ− γ1yt]

≤ var[µ − (Ω/(Ω + σ2
y)) · yt]

= var[(σ2
y/(Ω + σ2

y))µ − (Ω/(Ω + σ2
y))(yt − µ)]

=

(
σ2
y

Ω + σ2
y

)2

var[µ] +

(
Ω

Ω + σ2
y

)2

var[yt|µ]

=

(
σ2
y

Ω + σ2
y

)2

Ω +

(
Ω

Ω + σ2
y

)2

σ2
y

=
Ωσ2

y

Ω + σ2
y

= σ2
0.

This establishes the upper bound (2.4) stated in the main text.

C Demonstration that an Optimal Memory Structure

Records Information Only about the Reduced

Cognitive State

Let (1.5) be written in the partitioned form[
mt+1

m̄t+1

]
=

[
Λa,t Λb,t

Λc,t Λd,t

] [
st
s̄t

]
+

[
ωt+1

ω̄t+1

]
. (C.1)
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Here mt+1 is again partitioned as in (B.1). The lower block of st consists of the elements of
the reduced cognitive state

s̄t ≡
[
µ̂t
yt

]
,

both elements of which are linear functions of st, as a consequence of equation (2.1). We
choose a representation for the vector st such that the lower block consists of the elements
of s̄t, the elements of st are all uncorrelated with the elements of s̄t, and the elements of the
vectors s̄t and st together span the same linear space of random variables as the elements of
st. (We can necessarily write any memory structure of the form (1.5) in this way; it amounts
simply to a choice of the basis vectors in terms of which the vectors mt+1 and st are each
decomposed.)

Let us suppose furthermore that a representation for mt+1 is chosen consistent with the
normalization E[s̄t |mt+1] = m̄t+1. This holds if and only if both elements of the vector
s̄t − m̄t+1 are uncorrelated with each of the elements of mt+1. These consistency conditions
can be reduced to two requirements: (i) the requirement that

var[Λc,tst + ω̄t+1] = (I − Λd,t)XtΛ
′
d,t, (C.2)

where the matrix Xt ≡ var[s̄t] is independent of the memory structure chosen for period
t; and (ii) the requirement that s̄t − m̄t+1 be uncorrelated with all elements of mt+1. (Note
that s̄t − m̄t+1 is uncorrelated with m̄t+1 if and only if (C.2) holds.)

C.1 Forecast accuracy depends only on the matrices {Λd,t}
Suppose that in any period t, we take the memory structure in periods τ < t as given. This
means that the DM’s uncertainty about xt given the memory state mt (specified by the
posterior variance-covariance matrix Σt) will be given. (If t = 0, Σ0 is simply given by the
prior.) Hence the value of µ̂t as a function of m̄t and yt will be given, and consequently the
value of MSEt will be given, following the discussion in the main text (and the previous
section of this appendix). The elements of the matrix Xt will similarly be given.

We next consider how Λd,t must be chosen, in order for it to be possible to choose matrices
Λc,t and var[ω̄t+1] such that (C.2) is satisfied. Equation (C.2) requires that (I − Λd,t)XtΛ

′
d,t,

be a symmetric matrix; this will hold if and only if the simpler requirement is satisfied that
Λd,tXt = XtΛ

′
d,t be a symmetric matrix. In addition, it is necessary that (I − Λd,t)XtΛ

′
d,t be

a p.s.d. matrix. The set of matrices Λd,t with these properties is a non-empty set (Λd,t = 0 is
a trivial example), and depends only on the matrix Xt. Let this set of matrices be denoted
L(Xt).

Now let Λd,t be any matrix that belongs to L(Xt). Then it is possible to choose the
matrices Λc,t and var[ω̄t+1] so that (C.2) is satisfied; and given any such choice of these
two matrices, it is further possible to choose the specification of the equation for mt+1 so
that all elements of mt+1 are uncorrelated with the elements of s̄t − m̄t+1. Given any such
specifications, both conditions (i) and (ii) above will be satisfied. Thus the matrix Λd,t

is admissible as part of the specification of a memory structure; and any possible memory
structure consistent with the matrix Λd,t will be one of those with the properties just assumed.
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Given a matrix Λd,t of this sort, we next observe that the equations determining m̄t+1

can be written in the form
m̄t+1 = Λd,ts̄t + νt+1,

where νt+1 ∼ N(0, Λd,tXt) is distributed independently of s̄t. Thus the joint distribution
of (s̄t, m̄t+1) will be a multivariate Gaussian distribution, the parameters of which are com-
pletely determined by Xt and Λd,t. It then follows that the conditional distribution s̄t|m̄t+1

will be a bivariate Gaussian distribution, with a mean m̄t+1 and a variance independent of
the realization of m̄t+1, which also depends only on Xt and Λd,t. Moreover, since the elements
of mt+1 are all Gaussian random variables distributed independently of s̄t − m̄t+1, knowl-
edge of mt+1 cannot further improve one’s estimate of s̄t, and so the conditional distribution
s̄t|mt+1 = s̄t|m̄t+1. Finally, since we can write

xt+1 = s̄t +

[
ut
0

]
,

where ut ∼ N(0, σ̂2
t ) must be uncorrelated with any of the elements of st (and hence uncor-

related with any of the elements of mt+1), we must further have

xt+1|mt+1 ∼ N(m̄t+1, Σt+1)

where
Σt+1 = var[s̄t |m̄t+1] + σ̂2

t e1e
′
1.

Since σ̂2
t also depends only on Σt (see equation (2.2)), it follows that the elements of Σt+1

depend only on Σt and Λd,t.
This argument can then be used recursively (starting from period t = 0) to show that

given the initial uncertainty matrix Σ0 implied by the prior (B.2), we can completely de-
termine the entire sequence of matrices {Σt}, given a sequence of matrices {Λd,t} for all
t ≥ 0 with the property that for each t, Λd,t ∈ L(Xt), where Xt is the matrix implied by
Σt. Moreover, given such a sequence of matrices {Λd,t}, the value of MSEt for each period t
will be uniquely determined as well. Hence the terms in the loss function (1.6) that depend
on the accuracy of forecasts that are possible using a given memory structure will depend
only on the sequence of matrices {Λd,t}. (These matrices must be chosen to satisfy a set
of consistency conditions, stated above, but these conditions can also be expressed purely
in terms of the sequence of matrices {Λd,t}.) Thus the other elements of the specification
(C.1) of the memory structure matter only to the extent that they have consequences for
the information cost terms in (1.6).

C.2 Mutual information: a useful lemma

Information costs in period t are assumed to be an increasing function of It = I(M ;S),
the Shannon mutual information between random variables M (the realizations of which
are denoted mt+1) and S (the realizations of which are denoted st).

48 Each of the random
vectors M and S can further be partitioned as M = (M, M̄), S = (S, S̄).

48Here we adopt the notation used in Cover (2006), with different symbols for the random variables M
and S and their realizations. This is to make it clear that It is not a function of the values taken by mt+1

and st along a particular history, but instead a function of the complete joint distribution of the two random
variables; It is itself not a random variable, but a single number for each date t.
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Now for any random variables X1, X2, . . . , let H(X1, X2, . . . , Xk) be the entropy of the
joint distribution for variables (X1, X2, . . . , Xk), and H(X1, . . . , Xk |Xk+1, . . . Xk+m) be the
entropy of the joint distribution of the variables (X1, . . . , Xk) conditional on the values of
the variables (Xk+1, . . . Xk+m). The chain rule for entropy implies that

H(X1, X2, . . . , Xk) = H(X1) + H(X2 |X1) + . . . + H(Xk |X1, . . . , Xk−1).

We can then define the mutual information between the variables (X1, . . . , Xk) and the
variables (Xk+1, . . . Xk+m) as

I(X1, . . . , Xk; Xk+1, . . . , Xk+m) ≡ H(X1, . . . , Xk) − H(X1, . . . , Xk |Xk+1, . . . Xk+m).

(The information about the first set of variables that is revealed by learning the values of
the second set of variables is measured by the average amount by which the entropy of the
conditional distribution is smaller than the entropy of the unconditional distribution of the
first set of variables.) Similarly, we can define the mutual information between the first set
of variables and the second set of variables, conditioning on the values of some third set of
variables as

I(X1, . . . , Xk; Xk+1, . . . , Xk+m |Xk+m+1, . . . , Xk+m+n)

≡ H(X1, X2, . . . , Xk |Xk+m+1, . . . , Xk+m+n) − H(X1, . . . , Xk |Xk+1, . . . , Xk+m+n).

Thus for any set of four random variables M, M̄, S, S̄, we must have

I(S, S̄; M, M̄) = H(S, S̄) − H(S, S̄ |M, M̄)

= [H(S̄) +H(S |S̄)] − [H(S̄ |M, M̄) +H(S |S̄,M, M̄)]

= [H(S̄) +H(S |S̄)] − [H(S̄,M, M̄)−H(M |M̄)−H(M̄)] − H(S |S̄,M, M̄)

= [H(S̄) +H(S |S̄)] − [(H(M̄) +H(S̄ |M̄) +H(M |M̄, S̄))−H(M |M̄)−H(M̄)]

−H(S |S̄,M, M̄)

= [H(S̄) +H(S |S̄)] − [H(S̄ |M̄) +H(M |M̄, S̄)−H(M |M̄)] − H(S |S̄,M, M̄)

= [H(S̄)−H(S̄ |M̄)] + [H(S |S̄)−H(S |S̄,M, M̄)] + [H(M |M̄)−H(M |M̄, S̄)]

= I(S̄; M̄) + I(S; M, M̄ |S̄) + I(M ; S̄ |M̄).

Then, since mutual information is necessarily non-negative, we can establish the lower bound

It = I(S, S̄; M, M̄) ≥ I(S̄; M̄). (C.3)

Furthermore, this lower bound is achieved if and only if

I(S; M, M̄ |S̄) = I(M ; S̄ |M̄) = 0.

For any three random variablesX, Y, Z, the conditional mutual information I(X; Y |Z) =
0 if and only if the variables X and Y are distributed independently one another, conditional
on the value of Z. Hence the lower bound (C.3) is achieved if and only if (a) conditional
on the value of m̄t+1, the variables s̄t and mt+1 are independent of one another; and (b)
conditional on the value of s̄t, the variables st and mt+1 are independent of one another.
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C.3 Optimality of Setting Λa,t = Λb,t = Λc,t = 0

We return now to the consideration of possible memory structures. Let the sequence of
matrices {Λd,t} be chosen to satisfy the consistency conditions discussed above, and for a
given such sequence, consider an optimal choice of the remaining elements of the specification
(C.1), from among those specifications that are consistent with the sequence {Λd,t} (that is,
that will satisfy both conditions (i) and (ii) stated above).

We have shown above that the sequence of values {MSEt} is completely determined by
the specification of {Λd,t}. Hence other aspects of the specification of the memory structure
can matter only to the extent that they affect the sequence of values {It}. Moreover, we have
shown that the joint distribution of (s̄t, m̄t+1) each period is completely determined by Xt

and Λd,t, which means that the lower bound for It given in (C.3) is completely determined
by the choice of {Λd,τ} for τ ≤ t. It thus remains only to consider whether this lower bound
can be achieved, and under what conditions.

We first observe that the lower bound is achievable. For any sequence of matrices {Λd,t}
satisfying the specified conditions, a memory structure specification with Λa,t = Λb,t =
Λc,t = 0, together with a stipulation that ωt+1 be distributed independently of ω̄t+1 and that
var[ω̄t+1] = Λd,tXt, will satisfy both conditions (i) and (ii) stated in the introduction to this
appendix, and thus this represents a feasible memory structure. One can also show that such
a specification satisfies both of conditions (a) and (b) stated at the end of section C.2, so
that the lower bound (C.3) is achieved in each period. Thus such a specification achieves the
lowest possible value for the combined objective function (1.6), and will be optimal, given
our choice of the sequence {Λd,t}.

Not only will this specification be sufficient for achieving the lowest possible value of
(1.6), but it will be essentially necessary. We have shown above that achieving the lower
bound for It in period t requires that conditional on the value of s̄t, the variables st and mt+1

are independent of one another. This means that the values of the variables in the vector st
cannot help at all in predicting any elements of mt+1, once one is already using the reduced
cognitive state s̄t to forecast the next period’s memory state; thus one must be able to write
law of motion (C.1) for the memory state with Λa,t = Λc,t = 0.49 Thus it is necessarily the
case that the elements of mt+1 convey information only about the reduced cognitive state
s̄t, and not about any other aspects of the cognitive state st.

In addition, we have shown above that achieving the lower bound for It in period t
requires that conditional on the value of m̄t+1, the variables s̄t and mt+1 are independent of
one another. Thus all of the information about s̄t that is contained in the memory state mt+1

is contained in the elements m̄t+1. This means either that Λb,t = 0 as well, or, to the extent
that some element of mt+1 corresponds to a row of Λb,t with non-zero elements, that element
of mt+1 must be a linear combination of the elements of m̄t+1, so that conditioning upon its
value conveys no new information about s̄t. Thus any specification of the memory structure

49It might be possible to satisfy the condition required for the lower bound with non-zero elements in one
of these matrices; but this will occur only because of collinearity in the fluctuations in the elements of the
vector st, so that it is possible to have a law of motion in which st has no effect on mt+1, despite non-zero
matrices Λa,t and Λc,t. In such a case, the representation of the cognitive state by the vector st would
involve redundancy; and in any event, there would be no loss of generality in setting Λa,t = Λc,t = 0, since
the implied fluctuations in the memory state would be the same.
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in which Λb,t 6= 0 in any period represents a redundant representation of the contents of
memory available in period t + 1; we can equivalently describe the contents of memory by
eliminating all such rows from mt+1.

Thus there is no loss of generality in assuming that the lower bound is achieved by
specifying Λa,t = Λb,t = Λc,t = 0 in each period. Finally, satisfaction of consistency condition
(ii) in this case requires that the elements of ωt+1 be distributed independently of the elements
of ω̄t+1. We might still allow var[ωt+1] to be non-zero; this would mean that mt+1 contains
elements that fluctuate randomly, but are completely uncorrelated with the previous period’s
cognitive state st. Such an information structure is equally optimal, in the sense that (1.6)
is made no larger by the existence of such components of the memory state, given our
assumption that only mutual information is costly. But the additional components mt+1 of
the memory structure will have no consequences for cognitive processing, and our inclusion
of them as part of the representation of the memory state violates our assumption in the
text that we label memory states by their implied posteriors for the values of µ and the
past realizations of the external state; using labels (mt+1, m̄t+1) in which mt+1 is non-null
will mean having separate labels for memory states that imply the same posterior (since the
value of mt+1 would be completely uninformative about either µ or any past external states).

Hence in the case of any optimal memory structure, the memory state can be described
more compactly by identifying it with the reduced memory state m̄t+1, which evolves ac-
cording to

m̄t+1 = Λ̄ts̄t + ω̄t+1, (C.4)

where Λ̄t is the matrix called Λd,t in (C.1). (This corresponds to equation (2.7) in the main
text.) We need only consider (at most) a two-dimensional memory state, and the optimal
memory state conveys information only about the reduced cognitive state s̄t, not about any
other aspects of the cognitive state st.

D The Law of Motion for the Memory State and the

Information Content of Memory

We now consider how the parameterization of the law of motion (C.4) for the memory state
determines the degree of uncertainty about the external state vector that will exist when
beliefs are conditioned on the memory state, and how the same parameters determine the
mutual information between the memory state and the prior cognitive state, and hence the
size of the information cost term c(It).

We begin by recapitulating the conditions that the sequence of matrices {Λ̄t} and {Σω̄,t+1}
must satisfy, in order for (C.4) to represent a memory structure consistent with the normal-
ization according to which E[xt+1 |m̄t+1] = m̄t+1. Condition (C.2) will be satisfied if and
only if

Σω̄,t+1 = (I − Λ̄t)XtΛ̄
′
t. (D.1)

In order for there to be a symmetric, p.s.d. matrix Σω̄,t+1 that satisfies (D.1), it must be
the case that Λ̄t ∈ L(Xt). As explained above, this means that Λ̄tXt = XtΛ̄

′
t must be a

symmetric matrix, and in addition that (I − Λ̄t)XtΛ̄
′
t is p.s.d. Note that since

XtΛ̄
′
t = (I − Λ̄t)XtΛ̄

′
t + Λ̄tXtΛ̄

′
t,
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and Xt is necessarily a p.s.d. matrix, it follows from the assumption that (I − Λ̄t)XtΛ̄
′
t is

p.s.d. that Λ̄tXt = XtΛ̄
′
t will also be a p.s.d. matrix; but this latter condition is weaker

than the one assumed in our definition of the set L(Xt). This constitutes the complete set of
conditions that must be satisfied for (C.4) to represent a memory structure consistent with
our proposed normalization of the vector mt+1.

We can further specialize these conditions in the case that Λ̄t is a singular matrix. (Here
we assume that Xt is of full rank.) If Λ̄t is of rank one (or less), it can be written in the
form Λ̄t = utv

′
t, where we are furthermore free to normalize the vector v′t so that v′tXtvt = 1.

Then the condition that Λ̄tXt = XtΛ̄
′
t will hold only if ut(v

′
tXt) = (Xtvt)u

′
t. This means that

ut must be collinear with Xtvt, so that we must be able to write ut = λtXtvt, for some scalar
λt. Thus in the singular case, we must be able to write

Λ̄t = λtXtvtv
′
t, (D.2)

where λt is a scalar and vt is a vector such that v′tXtvt = 1. Then

(I − Λ̄t)XtΛ̄
′
t = λt(1− λt)(Xtvt)(Xtvt)

′

will be a p.s.d. matrix if and only if in addition 0 ≤ λt ≤ 1. Thus a singular matrix Λ̄t is an
element of L(Xt) if and only if it is of the form (D.2) with 0 ≤ λt ≤ 1 and vt a vector such
that v′tXtvt = 1.

Consistency with the proposed normalization of mt+1 then further requires that

Σω̄,t+1 = λt(1− λt)Xtvtv
′
tXt. (D.3)

This implies that Σω̄,t+1 is a singular matrix; the random vector ω̄t+1 can be written as
ω̄t+1 = Xtvt·ω̃t+1, where ω̃t+1 is a scalar random variable, with distributionN(0, λt(1−λt). It
follows that in such a case, the memory state can be given a one-dimensional representation,
writing m̄t+1 = Xtvt · m̃t+1, where the scalar memory state m̃t+1 has a law of motion

m̃t+1 = λtv
′
ts̄t + ω̃t+1, ω̃t+1 ∼ N(0, λt(1− λt)). (D.4)

In the case that Xt = X0 (the only case in which it is possible for Xt = X(σ̂2
t ) to be

singular), we have defined L(X0) to include only matrices of the special form (2.11) with
0 ≤ λt ≤ 1. In this case, Λ̄t is necessarily of the form (D.2), with the vector vt given by
(2.16). Hence our comments above about the case in which Λ̄t is singular apply also in the
case in which Xt is singular, except that in this latter case we have the further restriction
that vt must be given by (2.16). In this special case, (D.3) reduces to

Σω̄,t+1 = λt(1− λt)[Ω + σ2
y]ww

′.

D.1 The degree of uncertainty implied by a given memory
structure

We turn now to the question of how the posterior uncertainty Σt+1 in the following period
is determined by the law of motion for the memory state m̄t+1 that can be accessed at that
time. Note that the variance of the marginal distribution for xt+1 can be decomposed as

var[xt+1] = E[var[xt+1 |mt+1]] + var[E[xt+1 |mt+1]],
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where in the first term on the right-hand side, the variance refers to the distribution of values
for xt+1 conditional on the realization of mt+1, and the expectation is over realizations of
mt+1, while in the second term the variance refers to the distribution of values for mt+1,
and the expectation is over values of xt+1 conditional on the realization of mt+1. Since the
marginal distribution for xt+1 is the same for all t, and coincides with the prior distribution
for x0 specified in (B.2), the left-hand side must equal the matrix Σ0 defined there. Hence
the variance decomposition can be written as

Σ0 = Σt+1 + var[m̄t+1],

which implies that in any period,

Σt+1 = Σ0 − var[m̄t+1].

Thus in order to understand how the choice of Λ̄t determines Σt+1, it suffices that we deter-
mine the implications for the degree of variation in m̄t+1.

A law of motion of the form (C.4) implies that

var[m̄t+1] = Λ̄tXtΛ̄
′
t + Σω̄,t+1

= Λ̄tXtΛ̄
′
t + (I − Λ̄t)XtΛ̄

′
t

= XtΛ̄
′
t,

where the second line uses (D.1). Hence we obtain the prediction that

Σt+1 = Σ0 − XtΛ̄
′
t. (D.5)

Note that for any Λ̄t ∈ L(Xt), this must be a symmetric, p.s.d. matrix.
Hence for any value of σ̂2

t satisfying 0 ≤ σ̂2
t ≤ σ̂2

0 and any transition matrix Λ̄t ∈
L(X(σ̂2

t )), we can substitute Xt = X(σ̂2
t ) and the value of Σt+1 given by (D.5) into (2.2)

to obtain a solution for σ̂2
t+1 as a function of σ̂2

t and Λ̄t. This defines the function f(σ̂2
t , Λ̄t)

referred to in the main text. We can then define Lseq as the set of sequences of transition
matrices {Λ̄t} for all t ≥ 0 such that

Λ̄0 ∈ L(X0), Λ̄1 ∈ L(X(f(σ̂2
0, Λ̄0))), Λ̄2 ∈ L(X(f(f(σ̂2

0, Λ̄0), Λ̄1))),

and so on.
Then given any sequence of transition matrices {Λ̄t} ∈ Lseq, there will be uniquely

defined sequences {σ̂2
t , Xt} for all t ≥ 0. Equation (D.5), together with (B.2), can then be

used to uniquely define the implied sequence of matrices {Σt} for all t ≥ 0. These matrices
can in turn be used in (2.3) to define the Kalman gain γ1t for each t ≥ 0. Thus for any
sequence of transition matrices {Λ̄t} ∈ Lseq, there will be uniquely determined sequences
{Σt, γ1t, σ̂

2
t , Xt}, as stated in the text. These in turn will imply a uniquely determined

sequence of losses {MSEt} from forecast inaccuracy, using (2.5).
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D.2 The mutual information implied by a given memory structure

Finally, we compute the mutual information It in the case that the memory state consists
only of a reduced memory state m̄t+1, with law of motion (C.4). We first review the definition
of mutual information in the case of continuously distributed random variables.

Let X and Y be two random variables, each parameterized using a finite system of
coordinates (so that realizations x and y are each represented by finite-dimensional vectors),
and suppose that at least Y has a continuous distribution, with a density function p(y|x) such
that p(y|x) > 0 for all y in the support of Y and all x in the support of X. Suppose also that
the marginal distribution for Y can be characterized by a density function p(y) = E[p(Y |x)],
where the expectation is over possible realizations of x, and p(y) > 0 for all y in the support
of Y . Then we can measure the degree to which knowing the realization of x changes the
distribution that one can expect y to be drawn from by the Kullback-Liebler divergence (or
relative entropy) of the conditional distribution p(y|x) relative to the marginal distribution
p(y), defined as

DKL(p(·|x)||p(·)) ≡ E

[
log

p(y|x)

p(y)

]
≥ 0, (D.6)

where the expectation is over possible realizations of y, and this quantity is a function of
the particular realization x.50 The mutual information I(X; Y ) can then be defined as the
mean value of this expression,

I(X; Y ) ≡ E[DKL(p(·|x)||p(·))], (D.7)

where the expectation is now over possible realization of x, and the mutual information is
also necessarily non-negative.51

This definition of the mutual information has the attractive feature of being independent
of the coordinates used to parameterize the realizations of the variable Y . Suppose that
we write y = φ(z), where φ(·) is an invertible smooth coordinate transformation between
two Euclidean spaces of the same dimension. Then corresponding to the conditional density
p(y|x) for any x, there will be a corresponding density function p̃(z|x) for the random variable
Z (which is just the variable Y described using the alternative coordinate system), such that
p̃(z|x) = p(φ(z)|x) ·Dφ(z) for each z, where Dφ(z) is the Jacobian matrix of the coordinate
transformation, evaluated at z. It follows that for any z in the support of Z and any x in
the support of X,

p(φ(z)|x)

p(φ(z))
=

p̃(z|x)

p̃(z)
,

so that
DKL(p(·|x)||p(·)) = DKL(p̃(·|x)||p̃(·))

50The value of this quantity is necessarily non-negative because of Jensen’s inequality, owing to the con-
cavity of the logarithm.

51Note that this definition — rather than the one often given in terms of the average reduction in the
entropy of Y from observing X — has the advantage of remaining well-defined even when the random
variable Y has a continuous distribution. See Cover and Thomas (2006) for further discussion.
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for all x. We thus find that the mutual information I(X; Y ) will be the same as I(X; Z):
it is unaffected by a change in the coordinates used to parameterize Y .52

We can similarly define the mutual information in a case in which the support of Y is
not the entire Euclidean space, because of the existence of redundant coordinates in the
parameterization of realizations y. Suppose that all vectors y in the support of Y are of the
form y = φ(z), where φ(·) is a smooth embedding of some lower-dimensional Euclidean space
(the support of Z) into a higher-dimensional Euclidean space. Then the information about
the possible realizations of y contained in a realization of x is given by the information that
x contains about the possible realizations of z. If the joint distribution of X and Z is such
that we can define conditional density functions p̃(z|x), with p̃(z|x) > 0 for all z and x, and
a marginal density function p̃(z) > 0 for all z, then we can define the mutual information
between X and Z using (D.7) as above. Since mutual information should be independent of
the coordinates used to parameterize the variables, we can use the value of I(X; Z) as our
definition of I(X; Y ) in this case as well (even though expression (D.6) is not defined in this
case).

In the case of interest in this paper, X and Y are variables with a joint distribution
that is multivariate Gaussian. Let us consider first the generic case in which the conditional
variance-covariance matrix var[Y |x] is of full rank. (Note that this matrix will be independent
of the realization of x, and so can be written var[Y |X], to emphasize that only the parameters
of the joint distribution matter.) In this case var[Y ] is of full rank as well, and for any x and
y, the ratio of the density functions satisfies

log
p(y|x)

p(y)
= −1

2
log

det(var[Y |x])

det(var[Y ])

− 1

2
(y − E[y|x])′var[Y |x]−1(y − E[y|x]) +

1

2
(y − E[y])′var[Y ]−1(y − E[y]).

Hence for any x, we have

DKL(x) = −1

2
log

det(var[Y |x])

det(var[Y ])
,

and since this will be independent of the realization of x, we similarly will have

I(X; Y ) = −1

2
log

det(var[Y |X])

det(var[Y ])
. (D.8)

One case in which var[Y |x] will not be of full rank is if y = Uz for some matrix U , where
z is a random vector of lower dimension than that of y. (In this case, the rank of var[Y |x]
cannot be greater than the rank of var[Z|x], which is at most the dimension of z.) Let us
suppose that the rank of U is equal to the dimension of z, so that any vector y = Uz is
associated with exactly one vector z. In such a case we can, as discussed above, define the
mutual information between X and Y to equal the mutual information between X and Z. If

52It is equally unaffected by a change in the coordinates used to parameterize X, though we need not show
this here.
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var[Z|x] is of full rank, then we can use the calculations of the previous paragraph to show
that

I(X; Y ) = I(X; Z) = −1

2
log

det(var[Z|X])

det(var[Z])
. (D.9)

We turn now to the calculation of the mutual information between the reduced cognitive
state s̄t and the memory state m̄t+1, in the case of a law of motion of the form (C.4) for the
memory state. We first consider the case in which Xt is of full rank (which, as noted in the
text, will be true except when the memory state mt is completely uninformative). If Λ̄t and
I − Λ̄t are also both matrices of full rank, then

var[m̂t+1 |ŝt] = Σω̄,t+1 = (I − Λ̄t)XtΛ̄
′
t

will be of full rank, and

var[m̂t+1] = Λ̄tXtΛ̄
′
t + Σω̄,t+1 = XtΛ̄

′
t

will be of full rank as well. We can then apply (D.8) to obtain

It = −1

2
log

det[(I − Λ̄t)XtΛ̄
′
t]

det[XtΛ̄′t]
= −1

2
log det(I − Λ̄t), (D.10)

in conformity with equation (2.12) in the text.
In the case that Xt is of full rank, but Λ̄t is varied so that one of its eigenvalues approaches

1 (meaning that I − Λ̄t approaches a singular matrix, while the determinant of Λ̄t remains
bounded away from zero), the value of It implied by (D.10) grows without bound. It thus
makes sense to assign a value of +∞ to the mutual information in the case that Λ̄t is of full
rank but I− Λ̄t is not. Note that in this case there is a linear combination of the elements of
s̄t that is revealed with perfect precision by the memory state (since Σω̄,t+1 will be singular),
while this linear combination is a continuous random variable with positive variance (since
Xt is of full rank). This is not consistent with any finite value for the mutual information
(and so cannot represent a feasible memory structure).

Suppose instead that while Xt is of full rank, Λ̄t is only of rank one. In this case, we
have shown above that Λ̄t must be of the form (D.2), as a consequence of which Σω̄,t+1

must be given by (D.3). In this case, the memory state can be represented in the form
m̄t+1 = Xtvt · m̃t+1, where m̃t+1 is a scalar random variable with law of motion (D.4). This
implies that var[m̃t+1 |st] = var[ω̃t+1] = λt(1 − λt), while var[m̃t+1] = λt. In the case that
0 < λt < 1, we can then apply (D.9) to show that

It = −1

2
log

λt(1− λt)
λt

= −1

2
log(1− λt), (D.11)

Since in this case, det(I − Λ̂t) = det(I − λtvtv′t) = 1 − λt, result (D.11) is again just what
(D.10) would imply, so that (D.10) continues to be correct even though Λ̄t is singular.

If we consider a sequence of matrices of this kind in which λt approaches 1, the mutual
information (D.11) grows without bound. Thus we can assign the value +∞ to It in the case
that Λ̄t is a matrix of rank one with λt = 1. Indeed, in this case, the memory state reveals
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with perfect precision the value of v′ts̄t, a continuous random variable with positive variance
(under the assumption that Xt is of full rank); but this is not possible in the case of any
finite bound on mutual information. Hence (D.10) can be applied to this case as well.

Suppose instead that Xt is of full rank, but Λ̄t = 0. In this case, the distribution of m̄t+1

is independent of the value of st+1, and the mutual information between these two variables
must be zero. This is also what (D.10) would imply, so that (D.10) is correct in this case as
well.

Finally, consider the case in which Xt = X0, the only possible case in which Xt is not
of full rank. In this case, we have defined L(X0) to consist only of matrices of the form
(D.2), with the vector vt given by (2.16). If λt = 0, then the entire matrix Λ̄t = 0, and the
argument in the previous paragraph again applies. Suppose instead that λt > 0. Just as in
the discussion above of the case of a singular transition matrix, the memory state can be
represented by a scalar state variable m̃t+1 with law of motion (D.4), and we can apply (D.9)
to show that It will be given by (D.11). Again this is just what (D.10) would imply, so that
(D.10) also yields the correct conclusion when Xt is a singular matrix.

Thus in all cases, (D.10) applies, and the value of It depends only on the choice of the
transition matrix Λ̄t. It follows that for any sequence of transition matrices {Λ̄t} ∈ Lseq, there
will be uniquely defined sequences {MSEt, It}, allowing the objective (1.6) to be evaluated.

E Optimality of a Univariate Memory State

[TO BE ADDED]

F Numerical Solution for the Optimal Memory

Structure

Here we provide further details of the calculations reported in section 3 of the main text.

F.1 Dynamics of uncertainty given the path of {λt}
We begin by discussing numerical solution for the law of motion ηt+1 = φ(ηt;λt) for the
scaled uncertainty measure {ηt}, given a path for the memory-sensitivity coefficient {λt}. It
is useful to write the equations of the model in terms of scale-invariant matrices

X̃t ≡ σ−2
y Xt, Σ̃t ≡ σ−2

y Σt.

We can corresponding rescale the direction vector vt, defining ṽt ≡ σyvt, so that the rescaled
direction vector satisfies the normalization

ṽ′tX̃tṽt = 1. (F.1)
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The memory structure each period is then specified by the values of λt and ṽt.
Given the memory structure (λt, ṽt) for each t ≥ 0, the evolution of the variables

{ηt, X̃t, Σ̃t+1} is determined by the difference equations

X̃t = Σ̃0 −
(
ηt 0
0 0

)
Σ̃t+1 = Σ̃0 − λt(X̃tṽt)(X̃tṽt)

′

ηt+1 = e′1Σ̃t+1e1 −
(e′1Σ̃t+1c)

2

c′Σ̃t+1c+ 1− ρ2

starting from initial conditions

η0 =
K

K + 1
, Σ̃0 ≡

1

σ2
y

Σ0 =

(
K K
K K + 1

)
.

Now let the path {λt} be given, satisfying 0 ≤ λt ≤ 1 for each t. we wish to determine the
associated optimal sequence for the direction vectors {ṽt}, and hence the implied dynamics
for the other variables. To do this, we need to express the law of motion for ηt+1 as a function
of ηt, λt, and ṽt; we can then minimize over ṽt for given values of the other two arguments.

Let us introduce the additional notation e2 for the vector (0 1)′. Then from c′ = (1 −
ρ)e′1 + ρe′2, we get

c′Σ̃t+1c = (1− ρ)2e′1Σ̃t+1e1 + 2ρ(1− ρ)e′1Σ̃t+1e2 + ρ2e′2Σ̃t+1e2

= (1− ρ)2Σ̃11,t+1 + 2ρ(1− ρ)Σ̃12,t+1 + ρ2e′2Σ̃22,t+1

Similarly, e′1Σ̃t+1c = (1− ρ)Σ̃11,t+1 + ρΣ̃12,t+1. Using these two relations, we get

ηt+1 = e′1Σ̃t+1e1 −

(
e′1Σ̃t+1c

)2

c′Σ̃t+1c+ 1− ρ2

=
ρ2Σ̃11,t+1Σ̃22,t+1 − ρ2Σ̃12,t+1 + (1− ρ2)Σ̃11,t+1

c′Σ̃t+1c+ 1− ρ2

=
ρ2 det(Σ̃t+1) + (1− ρ2)e′1Σ̃t+1e1

c′Σ̃t+1c+ 1− ρ2

We wish to rearrange the nominator and the denominator as a variant of Rayleigh quo-
tient form. It is straightforward to rewrite the following terms:

e′1Σ̃t+1e1 = e′1Σ̃0e1 − ṽt
(
λtX̃te1e

′
1X̃t

)
ṽt

c′Σ̃t+1c = c′Σ̃0c− ṽt
(
λtX̃tcc

′X̃t

)
ṽt
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As for det(Σ̃t+1), we use the identity relation that for any symmetric matrix A and a vector
v, det(A− vv′) = det(A)− v′adj(A)v. That is,

det(Σ̃t+1) = det

(
Σ̃0 − λt

(
X̃tṽt

)(
X̃tṽt

)′)
= det(Σ̃0)− λt

(
X̃tṽt

)′
adj(Σ̃0)

(
X̃tṽt

)
= det(Σ̃0)− λt

(
X̃tṽt

)′
det(Σ̃0)Σ̃−1

0

(
X̃tṽt

)
= det(Σ̃0)− ṽ′t

(
λt det(Σ̃0)X̃tΣ̃

−1
0 X̃t

)
ṽt

Thus the law of motion for ηt+1 can be written in the form

ηt+1 =
q1 − ṽ′tZ1,tṽt
q2 − ṽ′tZ2,tṽt

(F.2)

where the coefficients are given by

q1 = ρ2 det(Σ̃0) + (1− ρ2)e′1Σ̃0e1

Z1,t = Z11,tX̃t where Z11,t = λtX̃t

(
ρ2 det(Σ̃0)Σ̃−1

0 + (1− ρ2)e1e
′
1

)
q2 = c′Σ̃0c+ 1− ρ2

Z2,t = Z22,tX̃t where Z22,t = λtX̃tcc
′

Here the qi are constants and the matrices Zi,t depend only on the values of ηt and λt; the
form (F.2) thus shows how the objective function (given on the right-hand side) depends on
the vector ṽt.

In any period t, given values for ηt and λt, the vector ṽt must be chosen to minimize the
objective (F.2) subject to the constraint (F.1). The Lagrangian problem is then given by

min
ṽt,ϕ
L =

q1 − ṽ′tZ1,tṽt
q2 − ṽ′tZ2,tṽt

+ ϕ(ṽ′tX̃tṽt − 1)

The first order conditions for this problem are

∂L
∂ṽt

=

(
1

q2 − ṽ′tZ2,tṽt

)2

[−2Z1,tṽt(q2 − ṽ′tZ2,tṽt) + 2Z2,tṽt(q1 − ṽ′tZ1,tṽt)] + 2ϕX̃tṽt = 0

∂L
∂ϕ

= ṽ′tX̃tṽt − 1 = 0

If we redefine the Lagrange multiplier as ϕ̃ ≡ (q2 − ṽ′tZ2,tṽt)ϕ, we then get

Z1,tṽt −
(
q1 − ṽ′tZ1,tṽt
q2 − ṽ′tZ2,tṽt

)
Z2,tṽt = ϕ̃X̃tṽt

The optimal solution (ṽ∗t , ϕ̃
∗) should satisfy

Z1,tṽ
∗
t − L∗Z2,tṽ

∗
t = ϕ̃∗X̃tṽ

∗
t
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where L∗ ≡ q1−(ṽ∗t )′Z1,tṽ∗t
q2−(ṽ∗t )′Z2,tṽ∗t

. Multiplying both sides by (ṽ∗t )
′, we get

ϕ̃∗ = (ṽ∗t )
′ (Z1,t − L∗Z2,t) ṽ

∗
t

The solution of the optimization problem is (ṽ∗t , ϕ̃
∗). Note that the FOCs of the opti-

mization problem can be written as

(Z̃11,t − LZ̃22,t)X̃tṽt = ϕ̃X̃tṽt

where L is the minimum achievable value of ηt+1. This relation shows that (ϕ̃, X̃tv) must be
an eigenvalue and associated eigenvector of (Z̃11,t − LZ̃22,t).

We numerically find a pair (v∗t , ϕ̃
∗) that satisfies the FOCs with the following algorithm:

1. Guess ṽ.

2. Evaluate L = q̃1−ṽ′Z̃1,tṽ

q̃2−ṽ′Z̃2,tṽ
and ϕ̃ = ṽ′

(
Z̃1,t − LZ̃2,t

)
ṽ.

3. Find the eigenvector v̂ of Z̃11,t − LZ̃22,t that corresponds to the eigenvalue ϕ̃.

4. Update ṽnew with v such that v̂ = X̃tv (after normalizing).

• If Xt is invertible, then v = (X̃t)
−1v̂.

• If not, we use the first row of Xt to back out v from v̂. That is, let v =

(
1

v̂1−X̃11,t

X̃12,t

)
5. Repeat 2-4 until the update converges.

Since the FOC allows multiple solutions, it is important to select the one that corresponds
to the global minimum. We therefore use a coarse global search to obtain an approximate
solution for ṽ first, and then use this approximate solution to initialize the algorithm de-
scribed above. In this way, we obtain a numerical solution for ηt+1 = φ(ηt;λt) for any values
of ηt and λt. Note that this allows a complete solution for the model dynamics in the case
of a fixed upper bound λ̄ (the results reported in section 3.1).

F.2 Solving for the value function Ṽ (η) and policy function λ∗(η)
in the case of a linear information cost

In the case of a linear information cost (or any other cost function with a positive marginal
cost of increasing It), it is necessary to solve the Bellman equation for the value function
Ṽ (η), in order to determine the optimal dynamics of {λt}. Here we explain the methods used
to solve this problem in the case of a linear information cost (the results reported in section
3.2).

Once we have solved for the function φ(ηt;λt), as in the previous subsection, the Bellman
equation for the case of a linear information cost can be written

Ṽ (ηt) = min
λt∈[0,1]

[
ηt −

θ̃

2
log (1− λt) + βṼ (φ(ηt;λt))

]
. (F.3)
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Figure 12: The evolution of scaled uncertainty about µ as the number t of previous (im-
perfectly remembered) observations grows. The right panel shows the long-run value of
scaled uncertainty (to which ηt converges as t → ∞) as a function of the constraint on the
complexity of memory, parameterized by λ̄.

We use the value function iteration algorithm to find the value function that is a fixed point
of this mapping.

When iterating the mapping to update the value function, we use a grid search method
to find the optimal policy function, because the right-hand side of the Bellman equation is in
general a non-convex function of the policy variable λt (as we illustrate in Figure xx below).
We approximate the value function with Chebyshev polynomials. Once the value function
has converged, we can use our solution for Ṽ (η) to solve numerically for the policy function
λ∗(η), the solution to the minimization problem on the right-hand side of (F.3). This is the
function graphed (for several values of θ̃) in Figure 3.

Figure 12 illustrates our comment about the possible non-convexity of the optimization
problem (F.3). Let RHS(λt; ηt) be the function defined on the right-hand side of (F.3),
i.e., the objective of the minimization problem. The figure plots the value of RHS(λ; η0),
normalized by dividing by the positive constant RHS(0; η0) (so that a value of 1.0 on the
vertical axis means that RHS(λ; η0) is of exactly the same size as RHS(0; η0)). This function
is shown for each of three slightly different values of θ̃, assuming in each case that K = 10, as
in the right panel of Figure 7 in the text. In the case of each of these curves, a large dot (the
same color as the curve) indicates the global minimum of the function. A horizontal dashed
line (also the same color as the corresponding curve) indicates the minimum of RHS(λ; η0)
— and thus the value of Ṽ (η0) — again normalized by dividing by RHS(η0).

The figure shows that for values of θ̃ in this range, RHS(λ) is not a convex function of
λ. It is increasing for small enough values of λ, making the choice λt = 0 a local minimum
in this case. (This is true for all values of θ̃ greater than a critical value around 0.15, which
explains the existence of the horizontal segment of the connected black curve in the right
panel of Figure 7.) However, the function reaches a local maximum, and then decreases for
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larger values of λ, as the degree to which a larger value of λt reduces φ(η0;λt) outweighs the
increase in the information cost. (A large enough value of K is required for this to occur.
A larger value of K increases the sensitivity of the value of φ(η0;λ) to the value of λ; see
equation (F.4) below.) For even larger values of λ (values approaching 1), further increases
in λ increase the information cost term so sharply that RHS(λ; η0) is again decreasing in λ.
This means that there is a second local minimum of the objective function, at an interior
value of λ. Which of the two local minima represents the global minimum of the function
depends on parameter values.

In the case illustrated in the figure, the interior local minimum achieves a lower value
of the objective than the choice λt = 0, for all values of θ̃ less than a critical value that is
slightly larger than 0.2805. (As shown in the figure, when θ̃ = 0.2805, the interior minimum
achieves a value of the objective that is quite close to the value RHS(0; η0). However, the
value achieved remains slightly smaller: there is a (barely visible) green dashed line, just
below the blue dashed line at the normalized value 1.0.) But the normalized value of the
objective at the interior minimum increases as θ̃ is increased, and for a value of θ̃ only
slightly greater than 0.2805, the normalized value becomes greater than 1.0 (which is to
say, the interior local minimum is no longer the global minimum of the objective). When
this critical value of θ̃ is passed, the optimal value λ∗(η0) jumps discontinuously from the
interior local minimum (which is a continuously decreasing function of θ̃) to the value zero.
When this happens, the optimal long-run level for the normalized uncertainty measure η∞
increases discontinuously, from a value on the lower branch of the correspondence shown in
the right panel of Figure 7 to the value η0 = K/K + 1. For all values of θ̃ higher than this,
it is optimal to choose a completely uninformative memory for all t, so that ηt = η0 for all
t, and hence ηt → η∞ = η0.

F.3 The case ρ = 0

Additional analytical results are possible in the case that ρ = 0 (the external state is an i.i.d.
random variable). In this case, the optimal choice for the direction vector is given by

ṽt =
1√

e′1X̃te1

e1;

that is, the optimal memory structure stores only a noisy record of µ̂t, placing no weight
on the value of yt. This is optimal since information about the current state yt (apart from
the estimate µ̂t, which takes into account the observation of yt) is of no use in improving
estimates or decisions in periods τ > t.

As a consequence, the degree of uncertainty at the beginning of next period given the
memory choice λt is given by

Σ̃t+1 = Σ̃0 − λt
1

e′1X̃te1

(
X̃te1

)(
X̃te1

)′
Hence the law of motion of ηt+1 = φ(ηt;λt) is given by

ηt+1 =
e′Σ̃t+1e

e′Σ̃t+1e+ 1
= 1− 1

e′Σ̃t+1e+ 1
= 1− 1

K + 1− λt(K − ηt)
≡ φ(ηt;λt). (F.4)
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The value function satisfies a Bellman equation of the form

Ṽ (ηt) = min
λt

[
β2ηt −

θ̃

2
log (1− λ) + βṼ (φ(ηt;λt)))

]
.

The first order condition with respect to λt is

θ̃

2

1

1− λt
+ βṼ ′(ηt+1)

∂φ(ηt;λt)

∂λt
= 0. (F.5)

And the envelope condition is

Ṽ ′(ηt) = β2 + βṼ ′(ηt+1)
∂φ(ηt;λt)

∂ηt
.

We can use these two conditions to derive an Euler equation for the dynamics of the scaled
uncertainty measure.

Substituting the solution (F.4) for φ(ηt;λt) and taking the derivative with respect to λt,
we can rewrite (F.5) as

Ṽ ′(ηt+1) = − θ̃

2β

1

1− λt

(
∂φ(ηt;λt)

∂λt

)−1

= − θ̃

2β

1

1− λt

(
− (K − ηt)

(K + 1− λt(K − ηt))2

)−1

=
θ̃

2β

(K + 1− λt(K − ηt))2

(1− λt)(K − ηt)

=
θ̃

2β

1

(1− ηt+1) (1− (1− ηt+1)(1 + ηt))
,

where the last equality is derived by again substituting the law of motion (F.4). It follows
that if ηt → η∞ in the long run, the stationary solution η∞ must satisfy

Ṽ ′(η∞) =
θ̃

2β

1

(1− η∞)η2
∞
. (F.6)

Next we rewrite (F.3), again taking the derivative of expression (F.4) for (̃ηt;λt):

Ṽ ′(ηt) = β2 + βṼ ′(ηt+1)
∂φ(ηt;λt)

∂ηt

= β2 + βṼ ′(ηt+1)
λt

(K + 1− λ(K − ηt))2

= β2 + βṼ ′(ηt+1)
λt

(1− ηt+1)−2

= β2 + βṼ ′(ηt+1)(1− ηt+1)2 (K + 1)(1− ηt+1)− 1

(K − ηt)(1− ηt+1)
.
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It follows that the stationary solution η∞ must satisfy

Ṽ ′(η∞) = β2 + βṼ ′(η∞)
(1− η∞) [(K + 1)(1− η∞)− 1]

K − η∞
. (F.7)

Moreover, in a stationary solution, the value Ṽ ′(η∞) given by (F.6) must also be the value
of Ṽ ′(η∞) in (F.7). Using (F.6) to substitute for Ṽ ′(η∞) in (F.7), we obtain a condition that
must be satisfied by η∞ in any stationary solution with an interior optimum (i.e., a stationary
solution in which 0 < η∞ < K/(K + 1)):

θ̃ = 2β3(1− η∞)η2
∞

[
1− β (K + 1)(1− η∞)2 − (1− η∞)

K − η∞

]−1

. (F.8)

This is the relationship between θ̃ and η∞ that is graphed as a connected black curve in
Figure 7. Note that for any value 0 < η∞ < K/(K + 1), there is a unique θ̃ > 0 consistent
with this relationship; but (as shown in the right panel of Figure 7) there may be multiple
solutions for η∞ consistent with a given value of θ̃.

G Predicted Values for the Quantitative Measures of

Over-Reaction

Here we provide further explanation of the numerical results reported in section 4 of the
main text.

G.1 Long-run stationary fluctuations

From the definition of the univariate memory state m̃t+1 = λtv
′
ts̄t + ωt+1, we can derive a

law of motion for the univariate memory state m̃t. Using the subscript ∞ for the long-run
stationary coefficients, we get

m̃t+1 = λ∞v
′
∞s̄t + ω̃t+1

= λ∞v∞

(
µ̂t
yt

)
+ ω̃t+1

= λ∞ [e′1v∞ {(e′1 − γ1c
′)mt + γ1yt}+ (e′2v∞)yt] + ω̃t+1

= λ∞ [e′1v∞ {(e′1 − γ1c
′)X∞v∞m̃t + γ1yt}+ (e′2v∞)yt] + ω̃t+1

= ρmm̃t + ρmyyt + ω̃t+1

where ρm ≡ λ∞(e′1v∞) (e′1 − γ1c
′)X∞v∞ and ρmy ≡ λ∞ (γ1 + e′2v∞).

In the long run, we can describe the evolution of the DM’s cognitive state using the
following system of equations:

m̃t+1 = ρmm̃t + ρmyyt + ω̃t+1

yt+1 = (1− ρ)µ+ ρyt + εy,t+1
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Therefore, we can write it as a VAR(1) system with constant coefficients and Gaussian
innovation terms: (

m̃t+1

yt+1

)
=

(
0

1− ρ

)
µ+

(
ρm ρmy
0 ρ

)(
m̃t

yt

)
+

(
ω̃t+1

εy,t+1

)
In the case of a fixed per-period bound on mutual information, we can compute the

impulse responses for the DM’s estimate of µ and her one-quarter-ahead forecast of the
external state, as explained in section 3.3. Here we present additional figures, showing what
the impulse responses shown in Figures 8 and 9 in the text would be like in the case of
alternative values of ρ than the ones assumed in those figures. In Figures xx and xx shown
here, each panel corresponds to a different value of ρ, and shows the responses for several
different possible values of λ̄. (As with Figures 8 and 9 in the main text, we here assume
K = 1.)
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Figure 13: Impulse responses of the DM’s estimate of µ for alternative degrees of persistence
ρ of the external state process.Figure 2: Impulse response of the DM’s estimate of µ for alternative degree of persistence
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Figure 14: Impulse responses of the DM’s one-quarter-ahead forecast of the external state
for alternative degrees of persistence ρ of the external state process.

Figure 3: Impulse response of the DM’s one-quarter-ahead forecast of the external state for alternative degree of
persistence
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G.2 Predicted value of the regression coefficient ρsubjh

Given a long enough series of observations from an environment with a fixed µ, our model
yields stationary values for the Kalman gain γ1 and for the amplitude of fluctuations in the
memory state var[m̄t]. We can then compute the value of the following long-run second
moments:

var[m̄t|µ] = var[m̄t]− cov[m̄t, µ]var[µ]−1cov[µ, m̄t]

= var[m̄t]− cov[m̄t, xt]e1var[µ]−1e′1cov[xt, m̄t]

= var[m̄t]−
1

var[µ]
var[m̄t]e1e

′
1var[m̄t]

cov[µ̂t, yt|µ] = cov[(e′1 − γ1c
′)m̄t + γ1yt, yt|µ]

= (e′1 − γ1c
′)cov[m̄t, yt|µ] + γ1var[yt|µ]

= (e′1 − γ1c
′)var[m̄t|µ]c+ γ1var[yt|µ]

var[µ̂t|µ] = var[(e′1 − γ1c
′)m̄t + γ1yt|µ]

= (e′1 − γ1c
′)var[m̄t|µ](e1 − γ1c) + γ2

1var[yt|µ] + 2γ1(e′1 − γ1c
′)cov[m̄t, yt|µ]

= (e′1 − γ1c
′)var[m̄t|µ](e1 − γ1c) + γ2

1var[yt|µ] + 2γ1(e′1 − γ1c
′)var[m̄t|µ]c

In order to write the dynamics of the model in terms of scale-invariant quantities, we
divide each second moment by var[yt|µ] = σ2

y . Thus we can write

var[m̄t|µ]

var[yt|µ]
= Σ̃m̄ −

1

K
Σ̃m̄e1e

′
1Σ̃m̄

cov[µ̂t, yt|µ]

var[yt|µ]
= (e′1 − γ1c

′)
var[m̄t|µ]

var[yt|µ]
c+ γ1

var[µ̂t|µ]

var[yt|µ]
= (e′1 − γ1c

′)
var[m̄t|µ]

var[yt|µ]
(e1 − γ1c) + γ2

1 + 2γ1(e′1 − γ1c
′)
var[m̄t|µ]

var[yt|µ]
c,

using the notation Σ̃m̄ ≡ var[m̄t]/σ
2
y .

We now wish to calculate the predicted asymptotic value of the regression coefficient

ρsubjh ≡ cov[ŷt+h|t, yt|µ]

var[yt|µ]

where ŷt+h|t ≡ E[yt+h|m̄t, yt]. From

cov[ŷt+h|t, yt|µ] = cov[(1− ρh)µ̂t + ρhyt, yt|µ]

= (1− ρh)cov[µ̂t, yt|µ] + ρhvar[yt|µ],

where µ̂t ≡ E[µ|m̄t, yt], we can then compute

ρsubjh = (1− ρh)cov[µ̂t, yt|µ]

var[yt|µ]
+ ρh

= (1− ρh)
[
(e′1 − γ1c

′)

(
Σ̃m̄ −

1

K
Σ̃m̄e1e

′
1Σ̃m̄

)
c + γ1

]
+ ρh.
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These are the coefficients whose values are plotted against the value of ρh = ρh in Figure 10.

G.3 Predicted value of the Coibion-Gorodnichenko regression
coefficient b

We wish to compute the predicted asymptotic value of the regression coefficient b ≡ cov[FEt,FRt]
var[FRt]

,
where FEt ≡ yt+1 − ŷt+1|t and FRt ≡ ŷt+1|t − ŷt+1|t−1.

From ŷt+1|t = (1− ρ)µ̂t + ρyt and ŷt+1|t−1 = (1− ρ2)µ̂t−1 + ρ2yt−1, we get

FEt = ((1− ρ)µ+ ρyt + εy,t+1)− ((1− ρ)µ̂t + ρyt)

= (1− ρ)µ− (1− ρ)µ̂t + εy,t+1

FRt = ((1− ρ)µ̂t + ρyt)−
(
(1− ρ2)µ̂t−1 + ρ2yt−1

)
= ρ(1− ρ)µ+ (1− ρ)µ̂t − (1− ρ2)µ̂t−1 + ρεy,t

Then

cov[FEt, FRt|µ] = −(1− ρ)2var[µ̂t|µ] + (1− ρ)(1− ρ2)cov[µ̂t, µ̂t−1|µ]

var[FRt|µ] =
{

(1− ρ)2 + (1− ρ2)2
}
var[µ̂t|µ] + var[ρεy,t|µ]− 2(1− ρ)(1− ρ2)cov[µ̂t, µ̂t−1|µ]

+ 2ρ(1− ρ)cov[µ̂t, εt|µ]

=
{

(1− ρ)2 + (1− ρ2)2
}
var[µ̂t|µ] + ρ2σ2

ε − 2(1− ρ)(1− ρ2)cov[µ̂t, µ̂t−1|µ]

+ 2ρ(1− ρ)γ1σ
2
ε ,

where we have substituted cov[µ̂t, εt|µ] = cov[γ1εy,t, εy,t|µ] = γ1σ
2
ε to obtain the last equality.

It then follows that

cov[FEt, FRt|µ]

var[yt|µ]
= −(1− ρ)2var[µ̂t|µ]

var[yt|µ]
+ (1− ρ)(1− ρ2)

cov[µ̂t, µ̂t−1|µ]

var[yt|µ]

var[FRt|µ]

var[yt|µ]
=
{

(1− ρ)2 + (1− ρ2)2
} var[µ̂t|µ]

var[yt|µ]
+ ρ2(1− ρ2)− 2(1− ρ)(1− ρ2)

cov[µ̂t, µ̂t−1|µ]

var[yt|µ]

+ 2ρ(1− ρ)(1− ρ2)γ1.

Using these expressions, we can compute the Coibion-Gorodnichenko regression coefficient

b =
cov[FEt, FRt|µ]

var[yt|µ]

(
var[FRt|µ]

var[yt|µ]

)−1

.

Note that when ρ = 0, this implies that b = −1
2
, since

cov[FEt, FRt|µ]

var[yt|µ]
= −var[µ̂t|µ]

var[yt|µ]
+
cov[µ̂t, µ̂t−1|µ]

var[yt|µ]

var[FRt|µ]

var[yt|µ]
= 2

var[µ̂t|µ]

var[yt|µ]
− 2

cov[µ̂t, µ̂t−1|µ]

var[yt|µ]
= −2

(
cov[FEt, FRt|µ]

var[yt|µ]

)
.
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Finally, to evaluate the expressions needed in order to compute the predicted value of
b, in general we need to be able to compute cov[µ̂t, µ̂t−1|µ]. For this, we need to solve for
the long-run stationary fluctuations in µ̂t. Using the notation X∞ and v∞ for the long-run
stationary values of Xt and vt, we can derive the long-run dynamics of µ̂t as follows.

µ̂t = (e′1 − γ1c
′)m̄t + γ1yt

= (e′1 − γ1c
′)

(
(λ∞X∞v∞v∞)

(
µ̂t−1

yt−1

)
+ ω̄t

)
+ γ1yt

= (e′1 − γ1c
′) (λ∞X∞v∞(e′1v∞µ̂t−1 + e′2v∞yt−1) + ω̄t) + γ1 (ρyt−1 + εt)

= ρµ̂µ̂t−1 + ρµ̂,yyt−1 + εµ̂t,

where ρµ̂ ≡ λ∞e
′
1v∞(e′1 − γ1c

′)X∞v∞, ρµ̂,y ≡ λ∞e
′
2v∞(e′1 − γ1c

′)X∞v∞ + γ1ρ, and εµ̂t =
(e′1 − γ1c

′)ω̄t + γ1εy,t. From this, we can derive

cov[µ̂t, µ̂t−1|µ] = cov[ρµ̂µ̂t−1 + ρµ̂,yyt−1, µ̂t−1|µ]

= ρµ̂var[µ̂t|µ] + ρµ̂,ycov[µ̂t, yt|µ].
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